ลำดับ

ลำดับ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับ

ลำดับ ( Sequence ) คือ เซตของจำนวนหรือตัวเลขที่เรียงกันเป็นระเบียบและมีเงื่อนไข เช่น ลำดับของจำนวนนับที่เพิ่มขึ้นทีละ 1 ก็จะสามารถเขียนได้เป็น

1, 2, 3, 4, … โดยตัวเลขเหล่านี้ เรียกว่า พจน์ ( Term ) เซตของลำดับจะเขีบยแทนด้วย a_{1},a_{2},a_{3},...,a_{n},...

และเราจะเรียก a_{1} ว่าพจน์ที่ 1

เรียก a_{2} ว่าพจน์ที่ 2

\vdots

เรียก a_{n} ว่าพจน์ที่ n หรือพจน์ทั่วไปหรือ พจน์สุดท้าย

ตัวอย่างของลำดับ  เช่น 1, 3, 5, 7, ….

โดเมนและเรนจ์ของลำดับ

โดเมนของลำดับคือ พจน์ของลำดับ หรือ n นั่นเอง ซึ่ง n ต้องเป็นจำนวนนับ

เรนจ์ของลำดับคือ ค่าของ a_n นั่นเอง

เช่น F = {(1,10),(2,20),(3,30)}  จะได้ว่า 

โดเมน คือ {1, 2, 3}

เรนจ์คือ {10, 20, 30}

ชนิดของ ลำดับ

ลำดับจำกัด คือ ลำดับที่สามารถระบุจำนวนพจน์ได้

เช่น 2, 4, 6, 8, … , 50  มี 25 พจน์

1, 2, 3, 4, … , n  มี n พจน์

ลำดับอนันต์ คือ ลำดับที่ไม่สามารถบอกจำนวนพจน์ได้

เช่น 1, 2, 3, …

“วิธีสังเกต”

ลำดับอนันต์จะมีจุดสามจุดอยู่หลังของลำดับเสมอ เพื่อแสดงให้เห็นว่าลำดับนี้ไปต่อได้เรื่อย ๆ ไม่มีที่สิ้นสุด

ตัวอย่างของ ลำดับ

1) ให้ ข้อ A คือ 1,4,9,16,25,…
ข้อ B คือ a_n= 16n เมื่อ n= 1,2,3,4
ข้อ C คือ a_n=3n² + 7 เมื่อ n เป็นจำนวนเต็มบวก

จะได้ว่า A  เป็นลำดับอนันต์ 

B เป็นลำดับจำกัด

C เป็นลำดับอนันต์

1) 7, 14, 21, 28, 35, …  เป็นลำดับอนันต์ ที่เพื่มขึ้นทีละ 7

2) 3, 6, 12, 24, 48  เป็นลำดับจำกัด ที่เพิ่มขึ้น 2 เท่าของพจน์ก่อนหน้า

3) 4, 9, 16, 25, 36, 49  ต้องหาสองครั้งเพราะการเพิ่มขึ้นของลำดับยังไม่เป็นระบบ

น้องจะเห็นว่าลำดับในข้อ 3 เป็นลำดับที่มีผลต่างร่วมเป็นค่าคงที่ในครั้งที่สอง หรือเพิ่มขึ้นอย่างคงที่ในครั้งที่สองนั่นเอง

จะเห็นว่าในลำดับนั้น เพิ่มขึ้นอย่างไม่เป็นระบบ คือ เพิ่มขึ้นทีละ 5, 6, 7, 8, 9 ตามลำดับ แต่ลองสังเกตดูว่า การเพิ่มขึ้นของ 5, 6,7,8,9 นั้นเพิ่มขึ้นทีละ 1 ดังนั้นจึงเป็นการเพิ่มขึ้นอย่างคงที่ในครั้งที่ 2 นั่นเอง

 

การหาพจน์ทั่วไปของลำดับ

วิธีการหาพจน์ที่ n จะแยกเป็น 3 กรณี

1) ระหว่างพจน์มีผลต่างที่เป็นค่าคงที่ นั่นก็คือ เป็นลำดับเพิ่มขึ้นหรือลดลง เป็นค่าคงที่ เช่น 8, 6, 4, 2  ( ลดลงทีละ 2 )

รูปแบบของพจน์ทั่วไปคือ a_{n}=an+b

ตัวอย่าง  หาพจน์ทั่วไปของลำดับ 1, 3, 5, 7, …

จากโจทย์ เราจะรู้ว่า a_{1}= 1, a_{2}=3

และจากสูตร a_{n}=an+b

เมื่อ n = 1 ; a_{1}=1=a(1)+b \rightarrow (1)

n = 2 ; a_{2}=3=a(3)+b \rightarrow (2)

(2) -(1) ; 2=a

แทน a_{1} ใน (1) จะได้ว่า 1=2+b

b=-1

ดังนั้น พจน์ทั่วไป ของลำดับข้างต้นคือ a_{n}=2n -1

2) ระหว่างพจน์มีอัตราส่วนร่วมเป็นค่าคงที่

รูปแบบของพจน์ทั่วไป คือ a_{n}=ar^{n}+b โดยที่ r คืออัตราส่วนร่วม

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 8, 16, 32, …

จะเห็นว่าลำดับดังกล่าวเพิ่มขึ้นเป็นสองเท่า ของพจน์ก่อนหน้า

ดังนั้น r = 2 และจากโจทย์จะได้ว่า a_{1}= 4, a_{2}=8

เมื่อ n = 1 ; a_{1}=4=a(2)^{1}+b \rightarrow (1)

n = 2 ; a_{2}=8=a(2)^{2}+b \rightarrow (2)

(2) – (1) ; 4 = ( 4 – 2 )a

แทน a_{1} ใน (1) จะได้ว่า 4=2(2)+b

b=0

ดังนั้น a_{n}=2(2)^{n}=2^{n+1}

 

3) ระหว่างพจน์มีผลต่างเป็นค่าคงที่ในการหาครั้งที่ 2

รูปพจน์ทั่วไป คือ \inline a_{n}=an^{2}+bn+c

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 9, 16, 25, …

เมื่อ n = 1 ; a_{1}=4=a(1)+b(1)+c \rightarrow (1)

n = 2 ; a_{2}=9=a(4)+b(2)+c \rightarrow (2)

n = 3 ; a_{3}=16=a(9)+b(3)+c \rightarrow (3)

(2)- (1) ; 5 = 3a +b\rightarrow (4)

(3) – (2) ; 7 = 5a +b\rightarrow(5)

(4)-(5) ; 2 =2a \rightarrow a=1

แทน a = 1 ใน (4) จะได้ 5=3+b\rightarrow b=2

แทน a = 1 และ b = 2 ใน (1) จะได้ 4 = 1 + 2 + c

c = 1

ดังนั้น รูปพจน์ทั่วไปคือ a^{n}=n^{2}+2n+1

ตัวอย่างของลำดับ

1.) จงหาว่าพจน์หลังกับพจน์หน้ามีความสัมพันธ์กันอย่างไร

1.1) 8, 6, 4, 2, ….

ตอบ พจน์หลังลดลงจากพจน์หน้าทีละ 2

1.2) 5, 10, 15, 20, …

ตอบ พจน์หลังเพิ่มขึ้นจากพจน์หน้าทีละ 5

 

2.) หา 4 พจน์ถัดไปของลำดับต่อไปนี้

2.1) 2, 5, 8, 11, …

วิธีทำ จากโจทย์จะเห็นว่าเป็นลำดับที่เพิ่มขึ้นทีละ 3

ดังนั้น 4 พจน์ถัดไปคือ 11+3 = 14, 14+3 = 17, 17+3 = 20, 20+3=23

นั่นคือ 14, 17, 20, 23

 

2.1)  200, 190, 170, 140,…

วิธีทำ จากโจทย์จะเห็นว่า พจน์ 2 ลดลงจากพจน์แรก 10 พจน์ 3 ลดลงจากพจน์ 2 20 และพจน์ 4 ลดลงจาดพจน์ 3 30

เราจะได้ลำดับใหม่ซึ่งเป็นลำดับของผลต่างระหว่างพจน์ ดังนี้ 10, 20, 30,… ดังนั้นอีก 3 พจน์ถัดไปควรจะเป็น 40, 50, 60 ตามลำดับ

ดังนั้นจะได้ว่า พจน์ที่ 5 ของลำดับในโจทย์ข้างต้น ควรจะน้อยกว่าพจน์ที่ 4 ไป 40 จะได้ว่า พจน์ที่ 5 คือ 140-40=100

พจน์ที่6 ต้องน้อยกว่าพจน์ที่ 5 ไป 50 ดังนั้น พจน์ที่ 6 คือ 100-50=50

พจน์ที่7 ต้องน้อยกว่าพจน์ที่ 6 อยู่ 60 ดังนั้น พจน์ที่7 คือ 50-60= -10

พจน์ที่ 8 ต้องน้อยกว่า พจน์ที่7 อยู่ 70 ดังนั้นพจน์ที่8 คือ -10 – 70 = -80

ดังนั้น 4 พจน์ถัดไปของลำดับ 200, 190, 170, 140,… คือ 100, 50, -10, -80 ตามลำดับ

3.) จงเขียน 5 พจน์แรกของลำดับต่อไปนี้

3.1) a_n=2n-1

วิธีทำ

แทน n=1 จะได้ว่า a_1=2(1)-1=1

n=2 จะได้ a_2=2(2)-1=3

n=3 จะได้ a_3=2(3)-1=5

n=4จะได้ a_4=2(4)-1=7

n=5จะได้ a_5=2(5)-1=9

จากการแทนค่า n ไปแล้ว เราจะได้ลำดับ 5 พจน์แรกดังนี้ 1, 3, 5, 7, 9

 

3.2) a_n=\left\{\begin{matrix} n+1 : n<3\\ 2n :\geq 3 \end{matrix}\right.

วิธีทำ จากโจทย์จะเห็นว่า ถ้า n น้อยกว่า 3 ดังนั้นเราจะใช้ n +1 ในการหาพจน์ที่ 1 และพจน์ที่ 2

และเราจะใช้ 2n ในการหาพจน์ที่ 3 ถึงพจน์ที่ 5

จะได้5พจน์แรกของลำดับดังนี้ 1+1, 2+1, 2(3), 2(4), 2(5) นั่นคือ 2, 3, 6, 8, 10

 

 

วิดีโอเพิ่มเติมเกี่ยวกับความหมายของลำดับ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

เตรียมสอบเข้า ม.1 โรงเรียนสวนกุหลาบวิทยาลัย

เตรียมสอบเข้าม.1 โรงเรียนสวนกุหลาบวิทยาลัย สวัสดีค่ะน้อง ๆ วันนี้มาพบกับพี่แอดมินและ Nock Academy อีกเช่นเคย ซึ่งเรายังคงอยู่กับหัวข้อของการเตรียมสอบเข้าม.1กันนะคะ วันนี้แอดมินจะพาน้อง ๆ ไปรู้จักกับโรงเรียนสวนกุหลาบวิทยาและการเตรียมตัวสอบเข้าในระดับชั้นม.1ของโรงเรียนแห่งนี้กันค่ะ ก่อนอื่นแอดมินต้องขอกล่าวประวัติคร่าว ๆ ของโรงเรียนให้ทุกคนได้รู้จักกันก่อนนะคะ โรงเรียนสวนกุหลาบวิทยาเป็นโรงเรียนชายล้วนที่ก่อตั้งขึ้นมาในสมัยพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว (รัชกาลที่ 5) ถือเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย ที่มีความโดดเด่นในเรื่องของวิชาการ ภาษาและความเป็นผู้นำ โดยศิษย์เก่าที่สำเร็จการศึกษามาจากโรงเรียนสวนกุหลาบวิทยาลัยแห่งนี้หลายคนเป็นผู้ที่มีชื่อเสียงและประสบความเร็จจึงทำให้ชื่อเสียงของโรงเรียนสวนกุหลาบวิทยาลัยนั้นเป็นที่รู้จักกันอย่างแพร่หลายในสังคมไทยมาอย่างยาวนาน หลักสูตรสวนกุหลาบวิทยาลัย ม.ต้น ในปัจจุบันโรงเรียนสวนกุหลาบวิทยาลัยได้มีการปรังปรุงและพัฒนาหลักสูตรให้มีความเท่าทันสังคมไทยในปัจจุบันมากยิ่งขึ้น

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

ความหมายและความสำคัญของ คำราชาศัพท์

  คำราชาศัพท์ เป็นวัฒนธรรมทางภาษาของประเทศไทยที่ให้ความสำคัญกับระดับของผู้พูดและผู้ฟัง น้อง ๆ หลายคนคงคุ้นเคยกันมาบ้างแล้วเวลาฟังข่าวในพระราชสำนัก แต่รู้หรือไม่คะว่าความหมายจริง ๆ ของคำราชาศัพท์คืออะไร มีใครบ้างที่เราต้องใช้คำราชาศัพท์ด้วย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทบทวนเรื่องคำราชาศัพท์พร้อมเรียนรู้คำราชาศัพท์ในหมวดร่างกายที่ใช้กับพระมหากษัตริย์กันค่ะ   ความหมายของคำราชาศัพท์     คำราชาศัพท์ หมายถึง คำที่ใช้กับพระมหากษัตริย์ และพระบรมวงศานุวงศ์ รวมไปถึงพระสงฆ์ โดยที่มีคำศัพท์และลักษณะการใช้ที่แตกต่างกันออกไปตามระดับภาษา ฐานะของบุคคลในสังคมไทยแบ่งตามวัยวุฒิและชาติวุฒิได้ดังนี้ 1.

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1