ลำดับ

ลำดับ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับ

ลำดับ ( Sequence ) คือ เซตของจำนวนหรือตัวเลขที่เรียงกันเป็นระเบียบและมีเงื่อนไข เช่น ลำดับของจำนวนนับที่เพิ่มขึ้นทีละ 1 ก็จะสามารถเขียนได้เป็น

1, 2, 3, 4, … โดยตัวเลขเหล่านี้ เรียกว่า พจน์ ( Term ) เซตของลำดับจะเขีบยแทนด้วย a_{1},a_{2},a_{3},...,a_{n},...

และเราจะเรียก a_{1} ว่าพจน์ที่ 1

เรียก a_{2} ว่าพจน์ที่ 2

\vdots

เรียก a_{n} ว่าพจน์ที่ n หรือพจน์ทั่วไปหรือ พจน์สุดท้าย

ตัวอย่างของลำดับ  เช่น 1, 3, 5, 7, ….

โดเมนและเรนจ์ของลำดับ

โดเมนของลำดับคือ พจน์ของลำดับ หรือ n นั่นเอง ซึ่ง n ต้องเป็นจำนวนนับ

เรนจ์ของลำดับคือ ค่าของ a_n นั่นเอง

เช่น F = {(1,10),(2,20),(3,30)}  จะได้ว่า 

โดเมน คือ {1, 2, 3}

เรนจ์คือ {10, 20, 30}

ชนิดของ ลำดับ

ลำดับจำกัด คือ ลำดับที่สามารถระบุจำนวนพจน์ได้

เช่น 2, 4, 6, 8, … , 50  มี 25 พจน์

1, 2, 3, 4, … , n  มี n พจน์

ลำดับอนันต์ คือ ลำดับที่ไม่สามารถบอกจำนวนพจน์ได้

เช่น 1, 2, 3, …

“วิธีสังเกต”

ลำดับอนันต์จะมีจุดสามจุดอยู่หลังของลำดับเสมอ เพื่อแสดงให้เห็นว่าลำดับนี้ไปต่อได้เรื่อย ๆ ไม่มีที่สิ้นสุด

ตัวอย่างของ ลำดับ

1) ให้ ข้อ A คือ 1,4,9,16,25,…
ข้อ B คือ a_n= 16n เมื่อ n= 1,2,3,4
ข้อ C คือ a_n=3n² + 7 เมื่อ n เป็นจำนวนเต็มบวก

จะได้ว่า A  เป็นลำดับอนันต์ 

B เป็นลำดับจำกัด

C เป็นลำดับอนันต์

1) 7, 14, 21, 28, 35, …  เป็นลำดับอนันต์ ที่เพื่มขึ้นทีละ 7

2) 3, 6, 12, 24, 48  เป็นลำดับจำกัด ที่เพิ่มขึ้น 2 เท่าของพจน์ก่อนหน้า

3) 4, 9, 16, 25, 36, 49  ต้องหาสองครั้งเพราะการเพิ่มขึ้นของลำดับยังไม่เป็นระบบ

น้องจะเห็นว่าลำดับในข้อ 3 เป็นลำดับที่มีผลต่างร่วมเป็นค่าคงที่ในครั้งที่สอง หรือเพิ่มขึ้นอย่างคงที่ในครั้งที่สองนั่นเอง

จะเห็นว่าในลำดับนั้น เพิ่มขึ้นอย่างไม่เป็นระบบ คือ เพิ่มขึ้นทีละ 5, 6, 7, 8, 9 ตามลำดับ แต่ลองสังเกตดูว่า การเพิ่มขึ้นของ 5, 6,7,8,9 นั้นเพิ่มขึ้นทีละ 1 ดังนั้นจึงเป็นการเพิ่มขึ้นอย่างคงที่ในครั้งที่ 2 นั่นเอง

 

การหาพจน์ทั่วไปของลำดับ

วิธีการหาพจน์ที่ n จะแยกเป็น 3 กรณี

1) ระหว่างพจน์มีผลต่างที่เป็นค่าคงที่ นั่นก็คือ เป็นลำดับเพิ่มขึ้นหรือลดลง เป็นค่าคงที่ เช่น 8, 6, 4, 2  ( ลดลงทีละ 2 )

รูปแบบของพจน์ทั่วไปคือ a_{n}=an+b

ตัวอย่าง  หาพจน์ทั่วไปของลำดับ 1, 3, 5, 7, …

จากโจทย์ เราจะรู้ว่า a_{1}= 1, a_{2}=3

และจากสูตร a_{n}=an+b

เมื่อ n = 1 ; a_{1}=1=a(1)+b \rightarrow (1)

n = 2 ; a_{2}=3=a(3)+b \rightarrow (2)

(2) -(1) ; 2=a

แทน a_{1} ใน (1) จะได้ว่า 1=2+b

b=-1

ดังนั้น พจน์ทั่วไป ของลำดับข้างต้นคือ a_{n}=2n -1

2) ระหว่างพจน์มีอัตราส่วนร่วมเป็นค่าคงที่

รูปแบบของพจน์ทั่วไป คือ a_{n}=ar^{n}+b โดยที่ r คืออัตราส่วนร่วม

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 8, 16, 32, …

จะเห็นว่าลำดับดังกล่าวเพิ่มขึ้นเป็นสองเท่า ของพจน์ก่อนหน้า

ดังนั้น r = 2 และจากโจทย์จะได้ว่า a_{1}= 4, a_{2}=8

เมื่อ n = 1 ; a_{1}=4=a(2)^{1}+b \rightarrow (1)

n = 2 ; a_{2}=8=a(2)^{2}+b \rightarrow (2)

(2) – (1) ; 4 = ( 4 – 2 )a

แทน a_{1} ใน (1) จะได้ว่า 4=2(2)+b

b=0

ดังนั้น a_{n}=2(2)^{n}=2^{n+1}

 

3) ระหว่างพจน์มีผลต่างเป็นค่าคงที่ในการหาครั้งที่ 2

รูปพจน์ทั่วไป คือ \inline a_{n}=an^{2}+bn+c

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 9, 16, 25, …

เมื่อ n = 1 ; a_{1}=4=a(1)+b(1)+c \rightarrow (1)

n = 2 ; a_{2}=9=a(4)+b(2)+c \rightarrow (2)

n = 3 ; a_{3}=16=a(9)+b(3)+c \rightarrow (3)

(2)- (1) ; 5 = 3a +b\rightarrow (4)

(3) – (2) ; 7 = 5a +b\rightarrow(5)

(4)-(5) ; 2 =2a \rightarrow a=1

แทน a = 1 ใน (4) จะได้ 5=3+b\rightarrow b=2

แทน a = 1 และ b = 2 ใน (1) จะได้ 4 = 1 + 2 + c

c = 1

ดังนั้น รูปพจน์ทั่วไปคือ a^{n}=n^{2}+2n+1

ตัวอย่างของลำดับ

1.) จงหาว่าพจน์หลังกับพจน์หน้ามีความสัมพันธ์กันอย่างไร

1.1) 8, 6, 4, 2, ….

ตอบ พจน์หลังลดลงจากพจน์หน้าทีละ 2

1.2) 5, 10, 15, 20, …

ตอบ พจน์หลังเพิ่มขึ้นจากพจน์หน้าทีละ 5

 

2.) หา 4 พจน์ถัดไปของลำดับต่อไปนี้

2.1) 2, 5, 8, 11, …

วิธีทำ จากโจทย์จะเห็นว่าเป็นลำดับที่เพิ่มขึ้นทีละ 3

ดังนั้น 4 พจน์ถัดไปคือ 11+3 = 14, 14+3 = 17, 17+3 = 20, 20+3=23

นั่นคือ 14, 17, 20, 23

 

2.1)  200, 190, 170, 140,…

วิธีทำ จากโจทย์จะเห็นว่า พจน์ 2 ลดลงจากพจน์แรก 10 พจน์ 3 ลดลงจากพจน์ 2 20 และพจน์ 4 ลดลงจาดพจน์ 3 30

เราจะได้ลำดับใหม่ซึ่งเป็นลำดับของผลต่างระหว่างพจน์ ดังนี้ 10, 20, 30,… ดังนั้นอีก 3 พจน์ถัดไปควรจะเป็น 40, 50, 60 ตามลำดับ

ดังนั้นจะได้ว่า พจน์ที่ 5 ของลำดับในโจทย์ข้างต้น ควรจะน้อยกว่าพจน์ที่ 4 ไป 40 จะได้ว่า พจน์ที่ 5 คือ 140-40=100

พจน์ที่6 ต้องน้อยกว่าพจน์ที่ 5 ไป 50 ดังนั้น พจน์ที่ 6 คือ 100-50=50

พจน์ที่7 ต้องน้อยกว่าพจน์ที่ 6 อยู่ 60 ดังนั้น พจน์ที่7 คือ 50-60= -10

พจน์ที่ 8 ต้องน้อยกว่า พจน์ที่7 อยู่ 70 ดังนั้นพจน์ที่8 คือ -10 – 70 = -80

ดังนั้น 4 พจน์ถัดไปของลำดับ 200, 190, 170, 140,… คือ 100, 50, -10, -80 ตามลำดับ

3.) จงเขียน 5 พจน์แรกของลำดับต่อไปนี้

3.1) a_n=2n-1

วิธีทำ

แทน n=1 จะได้ว่า a_1=2(1)-1=1

n=2 จะได้ a_2=2(2)-1=3

n=3 จะได้ a_3=2(3)-1=5

n=4จะได้ a_4=2(4)-1=7

n=5จะได้ a_5=2(5)-1=9

จากการแทนค่า n ไปแล้ว เราจะได้ลำดับ 5 พจน์แรกดังนี้ 1, 3, 5, 7, 9

 

3.2) a_n=\left\{\begin{matrix} n+1 : n<3\\ 2n :\geq 3 \end{matrix}\right.

วิธีทำ จากโจทย์จะเห็นว่า ถ้า n น้อยกว่า 3 ดังนั้นเราจะใช้ n +1 ในการหาพจน์ที่ 1 และพจน์ที่ 2

และเราจะใช้ 2n ในการหาพจน์ที่ 3 ถึงพจน์ที่ 5

จะได้5พจน์แรกของลำดับดังนี้ 1+1, 2+1, 2(3), 2(4), 2(5) นั่นคือ 2, 3, 6, 8, 10

 

 

วิดีโอเพิ่มเติมเกี่ยวกับความหมายของลำดับ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สัดส่วน

บทความนี้ได้รวบรวมความรู้เรื่อง สัดส่วน รวมทั้งโจทย์ปัญหาเกี่ยวกับสัดส่วน ซึ่งได้รวบรวมเนื้อหาและเขียนอธิบายไว้อย่างชัดเจน รวมถึงมีคลิปวิดีโอการสอน เพื่ออำนวยความสะดวกให้กับน้องๆ สามารถเรียนรู้ได้ทุกที่ทุกเวลา แต่ก่อนจะเรียนรู้เรื่องสัดส่วนนั้น น้องๆจำเป็นต้องมีความรู้ในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ อัตราส่วนของจำนวนหลายๆจำนวน ⇐⇐ สัดส่วน สัดส่วน คือ ประโยคที่แสดงการเท่ากันของอัตราส่วนสองอัตราส่วน อัตราส่วนทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกันหรือในทิศทางตรงกันข้ามก็ได้ ชนิดของสัดส่วน สัดส่วนมี 2 ชนิด คือ สัดส่วนตรง และ สัดส่วนผกผัน  

Tense and time

การใช้ Tenses ในภาษาอังกฤษ ที่เกี่ยวข้องกับเวลา

สวัสดีค่ะนักเรียนม.  1 ที่น่ารักทุกคนวันนี้ครูจะพาไปรู้จักกับ การใช้ Tense ต่าง ๆ ในภาษาอังกฤษกัน ก่อนอื่นมารู้จักTenses กันก่อน Tenses อ่านว่า เท้นสฺ ถ้าเป็นคำ Adjective หรือคุณศัพท์จะแปลว่าหนักหนาสาหัส แต่ถ้าเป็นคำนาม (Noun) จะแปลว่า กาลเวลาค่ะ หัวใจของการเรียนเรื่อง Tense คือ กริยา(verb) เมื่อกริยาเปลี่ยนไปเวลาและเงื่อนไขการใช้งานของ

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

M5 Past Passive

Passive Voice ในอดีต

  Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล   แบบฝึกหัดการให้เหตุผล ประกอบไปด้วยการให้เหตุผลแบบอุปนัยและการให้เหตุผลแบบนิรนัย ซึ่งแบบฝึกหัดนี้จะช่วยให้น้องๆได้ฝึกฝนการทำโจทย์จนน้องๆเชี่ยวชาญและส่งผลให้น้องๆทำข้อสอบได้แบบไม่ผิดพลาด ถ้าเรารู้เฉยๆเราอาจจะทำข้อสอบได้แต่การที่เราฝึกทำโจทย์ด้วยจะทำให้เราทำข้อสอบได้แน่นอนค่ะ แบบฝึกหัดเพิ่มเติมและข้อสอบ O-Net ตัวอย่างต่อไปนี้เป็นข้อสอบ O-Net ของปีก่อนๆ   1.) พิจารณาการอ้างเหตุผลต่อไปนี้ ก. เหตุ 1. ถ้าฝนไม่ตกแล้วเดชาไปโรงเรียน   2. ฝนตก      ผล   

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1