ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย

ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ

หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ

 

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์ เรียกว่า โคเซค  และฟังก์ชันที่เป็นส่วนกลับของโคไซน์ เรียกว่า เซค

เมื่อกำหนดให้ θ เป็นจำนวนจริง จะได้ว่า

cosecθ = \inline \frac{1}{sin\theta } โดยที่ sinθ ≠ 0

secθ = \inline \frac{1}{cos\theta } โดยที่ cosθ ≠ 0

หลักการจำคือ ให้จำแค่ secθ >>> จำว่า cos sec ( อ่านว่า คอสเซค) ซึ่งหมายถึงว่า secθ เป็นส่วนกลับของ cosθ นั่นเอง

ฟังก์ชันตรีโกณมิติอื่นๆ

ให้ θ เป็นจำนวนจริง

tanθ = \inline \frac{sin\theta }{cos\theta } เมื่อ cosθ ≠ 0

cotθ = \inline \frac{cos\theta }{sin\theta } เมื่อ sinθ ≠ 0 หรือจะบอกว่า cotθ = \inline \frac{1}{tan\theta } ก็ได้

โคฟังก์ชันของฟังก์ชันตรีโกณมิติ

โคฟังก์ชัน (Co-function) คือฟังก์ชันที่จับคู่กัน ได้แก่

sin เป็นโคฟังก์ชันของ cos

sec เป็นโคฟังก์ชันของ cosec

tan เป็นโคฟังก์ชันของ cot

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} – θ ) สามารถใช้หลักของโคฟังก์ชันได้ดังนี้

sin( \frac{\pi }{2} – θ ) = cosθ               cosec( \frac{\pi }{2} – θ ) = secθ

cos( \frac{\pi }{2} – θ ) = sinθ               sec( \frac{\pi }{2} – θ ) = cosecθ

tan( \frac{\pi }{2} – θ ) = cotθ               cot( \frac{\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} + θ )

sin( \frac{\pi }{2} + θ ) = cosθ              cosec( \frac{\pi }{2} + θ ) = secθ

cos( \frac{\pi }{2} + θ ) = -sinθ            sec( \frac{\pi }{2} + θ ) = -cosecθ

tan( \frac{\pi }{2} + θ ) = -cotθ            cot( \frac{\pi }{2} + θ ) = -tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} – θ )

sin( \frac{3\pi }{2} – θ ) = -cosθ               cosec( \frac{3\pi }{2} – θ ) = -secθ

cos( \frac{3\pi }{2} – θ ) = -sinθ               sec( \frac{3\pi }{2} – θ ) = -cosecθ

tan( \frac{3\pi }{2} – θ ) = cotθ                cot( \frac{3\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} + θ )

sin( \frac{3\pi }{2} + θ ) = -cosθ              cosec( \frac{3\pi }{2} + θ ) = -secθ

cos( \frac{3\pi }{2} + θ ) = sinθ               sec( \frac{3\pi }{2} + θ ) = cosecθ

tan( \frac{3\pi }{2} + θ ) = -cotθ             cot( \frac{3\pi }{2} + θ ) = -tanθ

น้องๆเห็นแล้วอาจจะคิดว่ามันเยอะแต่เราสามารถเลือกจำแค่บางตัวได้ตัวที่พี่อยากให้จำคือ sin และ cos

เช่น เราต้องการหา

tan( \frac{\pi }{2} + θ ) ซึ่งสามารถเขียนได้อีกแบบคือ \inline \frac{sin\left ( \frac{\pi }{2} +\theta \right )}{cos\left ( \frac{\pi }{2} +\theta \right )}

แยกหา sin( \frac{\pi }{2} + θ ) = cosθ และ cos( \frac{\pi }{2} + θ ) = -sinθ

ดังนั้นจะได้ \inline \frac{cos\theta }{-sin\theta } ซึ่งก็คือ -cotθ นั่นเอง

ตัวอย่างการหาค่าโคฟังก์ชัน

1) sec( -\frac{4\pi }{5} )

วิธีทำ  เรารู้ว่า โคฟังก์ชันของ sec คือ cosec

พิจารณา sec( -\frac{4\pi }{5} )  ตอนนี้เราได้ θ = -\frac{4\pi }{5}

จาก cosec( \frac{\pi }{2} – θ ) = secθ

ดังนั้น sec( -\frac{4\pi }{5} ) = cosec( \frac{\pi }{2}-  ( -\frac{4\pi }{5} )) = cosec( \frac{13\pi }{10} )

เราสามารถหาโคฟังก์ชันได้อีกวิธีหนึ่ง

นั่นก็คือเราจะพิจารณาว่า -\frac{4\pi }{5} มาจากอะไร????

พิจารณา \frac{\pi }{2}- \frac{13\pi }{10} = -\frac{4\pi }{5}

จะได้ว่า sec( -\frac{4\pi }{5} ) = sec( \frac{\pi }{2}- \frac{13\pi }{10} ) = cosec( \frac{13\pi }{10} )

การหาค่าฟังก์ชันตรีโกณมิติอื่นๆ

การหาค่าฟังก์ชันตรีโกนณ์เหล่านี้ไม่ยากเลย ยิ่งถ้าน้องๆมีพื้นฐานการหาค่าฟังก์ชันไซน์กับโคไซน์แล้วยิ่งง่ายมากๆเลย

เช่น ต้องการหา secθ เราก็แค่หา cosθ มาก่อน จากนั้นนำค่าที่ได้ไปเป็นตัวหารเราก็จะได้ค่า secθ มาแล้ว

ตัวอย่าง

1) หาค่า sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} )

  • พิจารณา sec( \frac{4\pi }{3} ) จาก secθ = \inline \frac{1}{cos\theta } ดังนั้น เราจะมาหาค่าของ cos( \frac{4\pi }{3} )

จากกฎมือซ้าย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

พิจารณา \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ซึ่งค่า x = cosθ ต้องเป็นจำนวนลบ

ดังนั้น cos( \frac{4\pi }{3} ) = -\frac{1}{2} นั่นคือ sec( \frac{4\pi }{3} ) = -2

  • พิจารณา cosec( \frac{7\pi }{6} ) จาก cosec( \frac{7\pi }{6} ) = \inline \frac{1}{sin\left ( \frac{7\pi }{6} \right )}

ดังนั้นเราจะมาหาค่าของ sin( \frac{7\pi }{6} ) ซึ่ง \frac{7\pi }{6} อยู่ควอดรันต์ที่ 3 ซึ่งค่า sin จะเป็นลบ และจาก sin( \frac{\pi }{6} ) = \frac{1}{2}

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}  นั่นคือ cosec( \frac{7\pi }{6} ) = -2

  • พิจารณา cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )}

เนื่องจากเรารู้ว่า cos( \frac{4\pi }{3} ) = -\frac{1}{2} 

ดังนั้นเราจะมาพิจารณา sin( \frac{4\pi }{3} ) โดย \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ค่า sin เป็นลบ และจากกฎมือซ้าย sin( \frac{\pi }{3}) = \frac{\sqrt{3}}{2}

ดังนั้น sin( \frac{4\pi }{3} ) = -\frac{\sqrt{3}}{2}

จะได้ว่า cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}

ดังนั้น sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} ) = -2 + (-2) – 3( \frac{1}{\sqrt{3}} ) = -4-\frac{3}{\sqrt{3}}

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เลขยกกำลัง

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น , , , 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น , เป็นต้น โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ เมื่อ k และ

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

คติธรรมในสำนวนไทย

คติธรรม หมายถึง ธรรมที่เป็นแบบอย่าง เป็นวัฒนธรรมที่เกี่ยวกับหลักการดำเนินชีวิตซึ่งได้มาจากหลักธรรมทางพระพุทธศาสนาหรืออาจเรียกได้ว่าเป็นวัฒนธรรมทางจิตใจอย่างหนึ่งที่คนไทยให้ความสำคัญอย่างมากและมักจะถูกสอดแทรกอยู่ในสื่อต่าง ๆ เพื่อปลูกฝังเด็กรุ่นใหม่ให้มีคติธรรมประจำใจ ไม่ว่าจะเป็นนิทานหรือสำนวนไทย สำหรับบทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง คติธรรมในสำนวนไทย มาดูกันค่ะว่าจะมีอะไรบ้าง   สำนวนที่เกี่ยวกับคติธรรม   สำนวนไทยถือเป็นภูมิปัญญาในการใช้ภาษาไทยอีกรูปแบบหนึ่ง เป็นถ้อยคำที่มิได้มีความหมายตรงไปตรงมาตามตัวอักษร หรือแปลตามรากศัพท์ แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ชวนให้ผู้อ่านได้คิด มีรูปแบบการใช้ภาษาที่ต้องผ่านการเรียบเรียงถ้อยคำ การรวมข้อความยาว ๆ ให้สั้น โดยนำถ้อยคำเพียงไม่กี่คำมาเรียงร้อย

ประวัติความเป็นมาของวรรณคดีคำสอน เรื่องสุภาษิตพระร่วง

สุภาษิตพระร่วง   คนไทยนิยมใช้สุภาษิตสั่งสอนลูกหลานกันมาตั้งแต่สมัยก่อนจนถึงปัจจุบัน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินสุภาษิตกันมาไม่มากก็น้อย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของสุภาษิตพระร่วง วรรณคดีอันทรงคุณค่าและเป็นวรรณคดีเล่มแรกที่แต่งคำประพันธ์เป็นร่ายโบราณแบบร่ายสุภาพ ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของสุภาษิตพระร่วง     สุภาษิตพระร่วง เป็นวรรณคดีคำสอนที่ทรงคุณค่าที่มีมาอย่างยาวนาน มีชื่อเรียกอีกอย่างหนึ่งว่า สุภาษิตบัณฑิตพระร่วง คำว่า พระร่วง ทำให้คนเข้าใจว่าอาจจะเป็นคำสอนของกษัตริย์สักคนที่มีนามว่า พระร่วง

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1