ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย

ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ

หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ

 

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์ เรียกว่า โคเซค  และฟังก์ชันที่เป็นส่วนกลับของโคไซน์ เรียกว่า เซค

เมื่อกำหนดให้ θ เป็นจำนวนจริง จะได้ว่า

cosecθ = \inline \frac{1}{sin\theta } โดยที่ sinθ ≠ 0

secθ = \inline \frac{1}{cos\theta } โดยที่ cosθ ≠ 0

หลักการจำคือ ให้จำแค่ secθ >>> จำว่า cos sec ( อ่านว่า คอสเซค) ซึ่งหมายถึงว่า secθ เป็นส่วนกลับของ cosθ นั่นเอง

ฟังก์ชันตรีโกณมิติอื่นๆ

ให้ θ เป็นจำนวนจริง

tanθ = \inline \frac{sin\theta }{cos\theta } เมื่อ cosθ ≠ 0

cotθ = \inline \frac{cos\theta }{sin\theta } เมื่อ sinθ ≠ 0 หรือจะบอกว่า cotθ = \inline \frac{1}{tan\theta } ก็ได้

โคฟังก์ชันของฟังก์ชันตรีโกณมิติ

โคฟังก์ชัน (Co-function) คือฟังก์ชันที่จับคู่กัน ได้แก่

sin เป็นโคฟังก์ชันของ cos

sec เป็นโคฟังก์ชันของ cosec

tan เป็นโคฟังก์ชันของ cot

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} – θ ) สามารถใช้หลักของโคฟังก์ชันได้ดังนี้

sin( \frac{\pi }{2} – θ ) = cosθ               cosec( \frac{\pi }{2} – θ ) = secθ

cos( \frac{\pi }{2} – θ ) = sinθ               sec( \frac{\pi }{2} – θ ) = cosecθ

tan( \frac{\pi }{2} – θ ) = cotθ               cot( \frac{\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} + θ )

sin( \frac{\pi }{2} + θ ) = cosθ              cosec( \frac{\pi }{2} + θ ) = secθ

cos( \frac{\pi }{2} + θ ) = -sinθ            sec( \frac{\pi }{2} + θ ) = -cosecθ

tan( \frac{\pi }{2} + θ ) = -cotθ            cot( \frac{\pi }{2} + θ ) = -tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} – θ )

sin( \frac{3\pi }{2} – θ ) = -cosθ               cosec( \frac{3\pi }{2} – θ ) = -secθ

cos( \frac{3\pi }{2} – θ ) = -sinθ               sec( \frac{3\pi }{2} – θ ) = -cosecθ

tan( \frac{3\pi }{2} – θ ) = cotθ                cot( \frac{3\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} + θ )

sin( \frac{3\pi }{2} + θ ) = -cosθ              cosec( \frac{3\pi }{2} + θ ) = -secθ

cos( \frac{3\pi }{2} + θ ) = sinθ               sec( \frac{3\pi }{2} + θ ) = cosecθ

tan( \frac{3\pi }{2} + θ ) = -cotθ             cot( \frac{3\pi }{2} + θ ) = -tanθ

น้องๆเห็นแล้วอาจจะคิดว่ามันเยอะแต่เราสามารถเลือกจำแค่บางตัวได้ตัวที่พี่อยากให้จำคือ sin และ cos

เช่น เราต้องการหา

tan( \frac{\pi }{2} + θ ) ซึ่งสามารถเขียนได้อีกแบบคือ \inline \frac{sin\left ( \frac{\pi }{2} +\theta \right )}{cos\left ( \frac{\pi }{2} +\theta \right )}

แยกหา sin( \frac{\pi }{2} + θ ) = cosθ และ cos( \frac{\pi }{2} + θ ) = -sinθ

ดังนั้นจะได้ \inline \frac{cos\theta }{-sin\theta } ซึ่งก็คือ -cotθ นั่นเอง

ตัวอย่างการหาค่าโคฟังก์ชัน

1) sec( -\frac{4\pi }{5} )

วิธีทำ  เรารู้ว่า โคฟังก์ชันของ sec คือ cosec

พิจารณา sec( -\frac{4\pi }{5} )  ตอนนี้เราได้ θ = -\frac{4\pi }{5}

จาก cosec( \frac{\pi }{2} – θ ) = secθ

ดังนั้น sec( -\frac{4\pi }{5} ) = cosec( \frac{\pi }{2}-  ( -\frac{4\pi }{5} )) = cosec( \frac{13\pi }{10} )

เราสามารถหาโคฟังก์ชันได้อีกวิธีหนึ่ง

นั่นก็คือเราจะพิจารณาว่า -\frac{4\pi }{5} มาจากอะไร????

พิจารณา \frac{\pi }{2}- \frac{13\pi }{10} = -\frac{4\pi }{5}

จะได้ว่า sec( -\frac{4\pi }{5} ) = sec( \frac{\pi }{2}- \frac{13\pi }{10} ) = cosec( \frac{13\pi }{10} )

การหาค่าฟังก์ชันตรีโกณมิติอื่นๆ

การหาค่าฟังก์ชันตรีโกนณ์เหล่านี้ไม่ยากเลย ยิ่งถ้าน้องๆมีพื้นฐานการหาค่าฟังก์ชันไซน์กับโคไซน์แล้วยิ่งง่ายมากๆเลย

เช่น ต้องการหา secθ เราก็แค่หา cosθ มาก่อน จากนั้นนำค่าที่ได้ไปเป็นตัวหารเราก็จะได้ค่า secθ มาแล้ว

ตัวอย่าง

1) หาค่า sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} )

  • พิจารณา sec( \frac{4\pi }{3} ) จาก secθ = \inline \frac{1}{cos\theta } ดังนั้น เราจะมาหาค่าของ cos( \frac{4\pi }{3} )

จากกฎมือซ้าย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

พิจารณา \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ซึ่งค่า x = cosθ ต้องเป็นจำนวนลบ

ดังนั้น cos( \frac{4\pi }{3} ) = -\frac{1}{2} นั่นคือ sec( \frac{4\pi }{3} ) = -2

  • พิจารณา cosec( \frac{7\pi }{6} ) จาก cosec( \frac{7\pi }{6} ) = \inline \frac{1}{sin\left ( \frac{7\pi }{6} \right )}

ดังนั้นเราจะมาหาค่าของ sin( \frac{7\pi }{6} ) ซึ่ง \frac{7\pi }{6} อยู่ควอดรันต์ที่ 3 ซึ่งค่า sin จะเป็นลบ และจาก sin( \frac{\pi }{6} ) = \frac{1}{2}

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}  นั่นคือ cosec( \frac{7\pi }{6} ) = -2

  • พิจารณา cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )}

เนื่องจากเรารู้ว่า cos( \frac{4\pi }{3} ) = -\frac{1}{2} 

ดังนั้นเราจะมาพิจารณา sin( \frac{4\pi }{3} ) โดย \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ค่า sin เป็นลบ และจากกฎมือซ้าย sin( \frac{\pi }{3}) = \frac{\sqrt{3}}{2}

ดังนั้น sin( \frac{4\pi }{3} ) = -\frac{\sqrt{3}}{2}

จะได้ว่า cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}

ดังนั้น sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} ) = -2 + (-2) – 3( \frac{1}{\sqrt{3}} ) = -4-\frac{3}{\sqrt{3}}

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1