ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น

จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม

เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน

แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง ขอบเขตมันเลยแคบลง

เช่น A ={1, 2, 3, 5}  B = {s, t, u}

ฟังก์ชันจาก A ไป B คือ {(1, s), (2, u), (2, t), (5, s)} จะเห็นว่าฟังกก์ชันถูกสร้างขอบเขตให้เลือกแค่สมาชิกจากในเซต 2 เซตนี้เท่านั้น ไม่สามารถหยิบสมาชิกจากเซตอื่นๆมาได้

ฟังก์ชันจาก A ไป B

f เป็นฟังก์ชันจาก A ไป B คือการส่งสมาชิกจากเซต A ไปยังเซต B โดย สมาชิกในเซต A จะถูกส่งตัวละครั้ง ไปยังเซต B ซึ่งไม่จำเป็นที่เซต B จะถูกใช้จนหมด นั่นก็คือเรนจ์ของฟังก์ชันเป็นสับเซตของ B เขียนแทนด้วย f : A → B

เช่น ให้ A = {2, 4, 6} และ B ={a, b, c}

ฟังก์ชันจาก A ไป B สามารถเขียนได้ดังนี้

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจาก B ไป A

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

** ฟังก์ชันคู่อันดับข้างต้นเป็นเพียงตัวอย่างเพื่อให้รู้ว่าการส่งฟังก์ชันจากเซตไปอีกเซตเป็นแบบไหน คู่อันดับอาจจะเป็นคู่อื่นนอกเหนือจากที่ยกตัวอย่างมา แต่! ต้องอย่าลืมว่า “ตัวหน้าต้องต่างกัน และต้องมาจากเซตที่กำหนดให้เท่านั้น” นะคะ**

 

ฟังก์ชันจาก A ไปทั่วถึง B

ฟังก์ชันจาก A ไปทั่วถึง B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิกใน B ครบทุกตัว ดังนั้นจะได้ว่า เรนจ์ของฟังก์ชันคือ เซต B เขียนแทนด้วย

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword คือ ทั่วถึง : แปลง่ายๆว่า A ไปยัง B อย่างทั่วถึง แสดงว่าสมาชิกใน B ต้องโดนจับคู่ทุกตัว

ตัวอย่างเช่น

ให้ A = {2, 4, 6, 7} และ B ={a, b, c}

 

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิก B โดยที่สมาชิกใน B 1 ตัว จะคู่กับ สมาชิกใน A เพียงหนึ่งตัวเท่านั้น

เขียนแทนด้วย  ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword ก็คือ 1 ต่อ 1 : เหมือนกับเราจับคู่กับเพื่อน ตัวเรา 1 คน ก็ต้องคู่กับเพื่อนอีก 1 คนเท่านั้นจะไปคู่กับคนอื่นอีกไม่ได้

ดังนั้นสำหรับฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับสองคู่ที่สมาชิกตัวหลังเท่ากันแล้วจะได้ว่าสมาชิกตัวหน้าจะต้องเท่ากัน

ตัวอย่างเช่น

ให้ A = {2, 4, 6} และ B ={a, b, c}

ดังนั้น {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

จากตัวอย่างข้างต้นนอกจากจะเป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B แล้ว ยังเป็นฟังก์ชันจาก A ไปทั่วถึง B อีกด้วย

ดังนั้นจะได้ว่า {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B เขียนแทนด้วย f : A\xrightarrow[onto]{1-1}B

 

ตัวอย่าง ฟังก์ชันจากเซตไปอีกเซตหนึ่ง

 

1.) จงตรวจสอบว่า f = {{(x, y):\sqrt{x+1}+\sqrt{y+1}=2}} เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่

เนื่องจากฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับ 2 คู่ ที่ สมาชิกตัวหลังเท่ากัน จะได้ว่าสมาชิกตัวหน้าก็เท่ากันด้วย

ดังนั้น ถ้าให้คู่อันดับ 2 คู่มี y เป็นสมาชิกตัวหลังและให้ x_1 , x_2 เป็นสมาชิกตัวหน้าของคู่อันดับดังกล่าว ถ้า f เป็นฟังก์ชันหนึ่งต่อหนึ่งเราจะต้องแสดงให้ได้ว่า x_1=x_2

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

2.) f(x) = 2x + 1 เป็นฟังก์ชันจาก R ไปทั่วถึง R หรือไม่ เพราะเหตุใด

ฟังก์ชันจาก R ไปทั่วถึง R หมายความว่า โดเมนของฟังก์ชันคือ R และเรนจ์ของฟังก์ชันก็คือ R เหมือนกัน

ตอบ f เป็นฟังก์ชันจาก R ไปทั่วถึง R เพราะ จาก โดเมน คือ  R ซึ่งเป็นจำนวนจริง จากสมบัติของจำนวนจริง (สมบัติปิดการบวกและการคูณ) ทำให้ได้ว่าไม่ว่าจะแทน x เป็นจำนวนจริงตัวใด เมื่อบวกหรือคูณกันแล้วก็ยังได้จำนวนจริงเหมือนเดิม จึงได้ว่าเรนจ์ของ f คือ R

 

3.) กำหนดให้ A = {1, 2, 3}, B = {2, 3, 4}

3.1) f_1 = {(1, 3), (2, 4), (3, 3)} เป็นฟังก์ชันใดบ้างบ้าง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า เรนจ์ของ f เป็นสับเซตของ B

ดังนั้นจะได้ว่า f_1 เป็นฟังก์ชันจาก A ไป B

 

3.2) f_2 = {(2, 2), (3, 3) , (4, 1)} เป็นฟังก์ชันใดบ้าง

จาก คู่อันดับข้างต้น สังเกตดู (4, 1) ตัวหน้าคือสมาชิกของเซต B และตัวหลังเป็นสมาชิกของเซต A แสดงว่า ฟังก์ชันนี้เป็นฟังก์ชันจาก B ไป A แน่นอน

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า สมาชิกในเซต A โดนจับคู่แค่ตัวละครั้ง ทั้ง A และ B สมาชิกทุกตัวมีคู่หมด

ดังนั้น f_2 เป็นฟังก์ชัน 1-1 จาก B ไปทั่วถึง A

 

4.) g(x) = x² + 1 เป็นฟังก์ชัน 1-1 หรือไม่

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

ทริคการสืบค้นข้อมูลทางอินเทอร์เน็ตอย่างง่าย ๆ

ย้อนกลับไปเมื่อหลายสิบปีที่แล้วก่อนที่อินเทอร์เน็ตจะเข้ามามีบทบาทในชีวิตของทุกคนเหมือนอย่างทุกวันนี้ แหล่งการสืบค้นหลัก ๆ จะอยู่ที่ห้องสมุด แต่ในปัจจุบันเราสามารถเข้าถึงข้อมูลต่าง ๆ ได้ง่ายขึ้นเพียงคลิกปลายนิ้ว ข้อมูลที่ต้องการค้นหาก็มาปรากฏอยู่ตรงหน้าให้เลือกสรรมากมาย แต่เราจะมีวิธีการเลือกสืบค้นข้อมูลกันอย่างไร ถึงจะได้ข้อมูลที่ถูกต้องและครบถ้วนที่สุด บทเรียนในวันนี้ถือเป็นอีกหนึ่งเรื่องสำคัญที่จะช่วยให้การหาข้อมูลสำหรับการเรียนของน้อง ๆ นั้นง่ายขึ้น เราไปเรียนรู้เรื่อง การสืบค้นข้อมูลทางอินเทอร์เน็ต กันเลยค่ะ   การสืบค้นข้อมูลทางอินเทอร์เน็ต   เป็นการค้นคว้าหาความรู้โดยใช้สารสนเทศในลักษณะต่าง ๆ โดยมีเว็บไซต์ที่เป็นแหล่งเก็บรวบรวมภาพและข้อมูลต่าง ๆ    

ทศนิยมกับการวัด

ความสัมพันธ์ของทศนิยมกับการวัด

บทความนี้จะกล่าวถึงความสัมพันธ์ของทศนิยมกับการวัด ที่จะทำให้น้อง ๆสามารถนำไปประยุกต์ใช้กับสถาณการณ์ที่ต้องเจอในชีวิตประจำวัน จะทำให้เข้าใจหลักการและสามารถบอกค่าของการวัดที่เป็นทศนิยมได้ถูกต้อง

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

wh- question

Wh- Question ใน Past Simple และ Future Tense

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะเรียนรู้เกี่ยวกับการใช้ Wh- Question ในประโยคที่เป็น Past Simple และ Future Tense จะเป็นอย่างไรลองไปดูกันเลยครับ

คุณค่าในเรื่องพระอภัยมณี มีอะไรบ้าง?

หลังจากที่บทเรียนคราวที่แล้วเราได้เรียนเรื่องประวัติความเป็นมาของวรรณคดีเรื่องสุนทรภู่ไปแล้ว วันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึง คุณค่าในเรื่องพระอภัยมณี ว่ามีคุณค่าด้านใดบ้าง เพื่อที่น้อง ๆ จะได้รู้เหตุผลว่าทำไมวรรณคดีเรื่องนี้ถึงเป็นเรื่องที่โด่งที่สุดอีกเรื่องหนึ่งของสุนทรภู่ เป็นวรรณคดีที่ดังข้ามเวลาและอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   คุณค่าในเรื่องพระอภัยมณี     คุณค่าทางด้านวรรณศิลป์   พระอภัยมณีเป็นเรื่องมีรสทางวรรณคดีคือเสาวรจนีย์และสัลปังคพิสัย ดังนี้ เสาวรจนีย์ เป็นบทชมโฉมหรือความงาม พบในตอนที่พระอภัยชมความงามของนางเงือก     2.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1