ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น

จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม

เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน

แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง ขอบเขตมันเลยแคบลง

เช่น A ={1, 2, 3, 5}  B = {s, t, u}

ฟังก์ชันจาก A ไป B คือ {(1, s), (2, u), (2, t), (5, s)} จะเห็นว่าฟังกก์ชันถูกสร้างขอบเขตให้เลือกแค่สมาชิกจากในเซต 2 เซตนี้เท่านั้น ไม่สามารถหยิบสมาชิกจากเซตอื่นๆมาได้

ฟังก์ชันจาก A ไป B

f เป็นฟังก์ชันจาก A ไป B คือการส่งสมาชิกจากเซต A ไปยังเซต B โดย สมาชิกในเซต A จะถูกส่งตัวละครั้ง ไปยังเซต B ซึ่งไม่จำเป็นที่เซต B จะถูกใช้จนหมด นั่นก็คือเรนจ์ของฟังก์ชันเป็นสับเซตของ B เขียนแทนด้วย f : A → B

เช่น ให้ A = {2, 4, 6} และ B ={a, b, c}

ฟังก์ชันจาก A ไป B สามารถเขียนได้ดังนี้

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจาก B ไป A

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

** ฟังก์ชันคู่อันดับข้างต้นเป็นเพียงตัวอย่างเพื่อให้รู้ว่าการส่งฟังก์ชันจากเซตไปอีกเซตเป็นแบบไหน คู่อันดับอาจจะเป็นคู่อื่นนอกเหนือจากที่ยกตัวอย่างมา แต่! ต้องอย่าลืมว่า “ตัวหน้าต้องต่างกัน และต้องมาจากเซตที่กำหนดให้เท่านั้น” นะคะ**

 

ฟังก์ชันจาก A ไปทั่วถึง B

ฟังก์ชันจาก A ไปทั่วถึง B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิกใน B ครบทุกตัว ดังนั้นจะได้ว่า เรนจ์ของฟังก์ชันคือ เซต B เขียนแทนด้วย

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword คือ ทั่วถึง : แปลง่ายๆว่า A ไปยัง B อย่างทั่วถึง แสดงว่าสมาชิกใน B ต้องโดนจับคู่ทุกตัว

ตัวอย่างเช่น

ให้ A = {2, 4, 6, 7} และ B ={a, b, c}

 

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิก B โดยที่สมาชิกใน B 1 ตัว จะคู่กับ สมาชิกใน A เพียงหนึ่งตัวเท่านั้น

เขียนแทนด้วย  ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword ก็คือ 1 ต่อ 1 : เหมือนกับเราจับคู่กับเพื่อน ตัวเรา 1 คน ก็ต้องคู่กับเพื่อนอีก 1 คนเท่านั้นจะไปคู่กับคนอื่นอีกไม่ได้

ดังนั้นสำหรับฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับสองคู่ที่สมาชิกตัวหลังเท่ากันแล้วจะได้ว่าสมาชิกตัวหน้าจะต้องเท่ากัน

ตัวอย่างเช่น

ให้ A = {2, 4, 6} และ B ={a, b, c}

ดังนั้น {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

จากตัวอย่างข้างต้นนอกจากจะเป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B แล้ว ยังเป็นฟังก์ชันจาก A ไปทั่วถึง B อีกด้วย

ดังนั้นจะได้ว่า {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B เขียนแทนด้วย f : A\xrightarrow[onto]{1-1}B

 

ตัวอย่าง ฟังก์ชันจากเซตไปอีกเซตหนึ่ง

 

1.) จงตรวจสอบว่า f = {{(x, y):\sqrt{x+1}+\sqrt{y+1}=2}} เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่

เนื่องจากฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับ 2 คู่ ที่ สมาชิกตัวหลังเท่ากัน จะได้ว่าสมาชิกตัวหน้าก็เท่ากันด้วย

ดังนั้น ถ้าให้คู่อันดับ 2 คู่มี y เป็นสมาชิกตัวหลังและให้ x_1 , x_2 เป็นสมาชิกตัวหน้าของคู่อันดับดังกล่าว ถ้า f เป็นฟังก์ชันหนึ่งต่อหนึ่งเราจะต้องแสดงให้ได้ว่า x_1=x_2

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

2.) f(x) = 2x + 1 เป็นฟังก์ชันจาก R ไปทั่วถึง R หรือไม่ เพราะเหตุใด

ฟังก์ชันจาก R ไปทั่วถึง R หมายความว่า โดเมนของฟังก์ชันคือ R และเรนจ์ของฟังก์ชันก็คือ R เหมือนกัน

ตอบ f เป็นฟังก์ชันจาก R ไปทั่วถึง R เพราะ จาก โดเมน คือ  R ซึ่งเป็นจำนวนจริง จากสมบัติของจำนวนจริง (สมบัติปิดการบวกและการคูณ) ทำให้ได้ว่าไม่ว่าจะแทน x เป็นจำนวนจริงตัวใด เมื่อบวกหรือคูณกันแล้วก็ยังได้จำนวนจริงเหมือนเดิม จึงได้ว่าเรนจ์ของ f คือ R

 

3.) กำหนดให้ A = {1, 2, 3}, B = {2, 3, 4}

3.1) f_1 = {(1, 3), (2, 4), (3, 3)} เป็นฟังก์ชันใดบ้างบ้าง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า เรนจ์ของ f เป็นสับเซตของ B

ดังนั้นจะได้ว่า f_1 เป็นฟังก์ชันจาก A ไป B

 

3.2) f_2 = {(2, 2), (3, 3) , (4, 1)} เป็นฟังก์ชันใดบ้าง

จาก คู่อันดับข้างต้น สังเกตดู (4, 1) ตัวหน้าคือสมาชิกของเซต B และตัวหลังเป็นสมาชิกของเซต A แสดงว่า ฟังก์ชันนี้เป็นฟังก์ชันจาก B ไป A แน่นอน

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า สมาชิกในเซต A โดนจับคู่แค่ตัวละครั้ง ทั้ง A และ B สมาชิกทุกตัวมีคู่หมด

ดังนั้น f_2 เป็นฟังก์ชัน 1-1 จาก B ไปทั่วถึง A

 

4.) g(x) = x² + 1 เป็นฟังก์ชัน 1-1 หรือไม่

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว ระบบสมการเชิงเส้นสองตัวแปร เช่น แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้) แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

ศึกษาตัวบทและคุณค่าของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช   หลังจากได้ศึกษาประวัติความเป็นมาและเรื่องย่ออย่างคร่าว ๆ ของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสากันไปแล้ว บทเรียนวันนี้เราจะมาศึกษาเกี่ยวกับตัวบทเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในเรื่องนี้กันค่ะ ไปดูพร้อม ๆ กันเลยนะคะว่าวรรณคดีที่ถูกแปลมาจากพงศาวดารมอญอย่างราชาธิราชเรื่องนี้จะมีตัวบทไหนที่น่าสนใจและให้คุณค่าอะไรบ้าง   ศึกษาตัวบทราชาธิราช ตอน สมิงพระรามอาสา     บทเด่น ๆ บทที่ 1    บทดังกล่าวเกิดขึ้นในตอนที่สมิงพระรามอาสาไปขี่ม้ารำทวนสู้กับกามะนี

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1