ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น

จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม

เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน

แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง ขอบเขตมันเลยแคบลง

เช่น A ={1, 2, 3, 5}  B = {s, t, u}

ฟังก์ชันจาก A ไป B คือ {(1, s), (2, u), (2, t), (5, s)} จะเห็นว่าฟังกก์ชันถูกสร้างขอบเขตให้เลือกแค่สมาชิกจากในเซต 2 เซตนี้เท่านั้น ไม่สามารถหยิบสมาชิกจากเซตอื่นๆมาได้

ฟังก์ชันจาก A ไป B

f เป็นฟังก์ชันจาก A ไป B คือการส่งสมาชิกจากเซต A ไปยังเซต B โดย สมาชิกในเซต A จะถูกส่งตัวละครั้ง ไปยังเซต B ซึ่งไม่จำเป็นที่เซต B จะถูกใช้จนหมด นั่นก็คือเรนจ์ของฟังก์ชันเป็นสับเซตของ B เขียนแทนด้วย f : A → B

เช่น ให้ A = {2, 4, 6} และ B ={a, b, c}

ฟังก์ชันจาก A ไป B สามารถเขียนได้ดังนี้

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจาก B ไป A

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

** ฟังก์ชันคู่อันดับข้างต้นเป็นเพียงตัวอย่างเพื่อให้รู้ว่าการส่งฟังก์ชันจากเซตไปอีกเซตเป็นแบบไหน คู่อันดับอาจจะเป็นคู่อื่นนอกเหนือจากที่ยกตัวอย่างมา แต่! ต้องอย่าลืมว่า “ตัวหน้าต้องต่างกัน และต้องมาจากเซตที่กำหนดให้เท่านั้น” นะคะ**

 

ฟังก์ชันจาก A ไปทั่วถึง B

ฟังก์ชันจาก A ไปทั่วถึง B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิกใน B ครบทุกตัว ดังนั้นจะได้ว่า เรนจ์ของฟังก์ชันคือ เซต B เขียนแทนด้วย

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword คือ ทั่วถึง : แปลง่ายๆว่า A ไปยัง B อย่างทั่วถึง แสดงว่าสมาชิกใน B ต้องโดนจับคู่ทุกตัว

ตัวอย่างเช่น

ให้ A = {2, 4, 6, 7} และ B ={a, b, c}

 

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิก B โดยที่สมาชิกใน B 1 ตัว จะคู่กับ สมาชิกใน A เพียงหนึ่งตัวเท่านั้น

เขียนแทนด้วย  ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword ก็คือ 1 ต่อ 1 : เหมือนกับเราจับคู่กับเพื่อน ตัวเรา 1 คน ก็ต้องคู่กับเพื่อนอีก 1 คนเท่านั้นจะไปคู่กับคนอื่นอีกไม่ได้

ดังนั้นสำหรับฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับสองคู่ที่สมาชิกตัวหลังเท่ากันแล้วจะได้ว่าสมาชิกตัวหน้าจะต้องเท่ากัน

ตัวอย่างเช่น

ให้ A = {2, 4, 6} และ B ={a, b, c}

ดังนั้น {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

จากตัวอย่างข้างต้นนอกจากจะเป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B แล้ว ยังเป็นฟังก์ชันจาก A ไปทั่วถึง B อีกด้วย

ดังนั้นจะได้ว่า {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B เขียนแทนด้วย f : A\xrightarrow[onto]{1-1}B

 

ตัวอย่าง ฟังก์ชันจากเซตไปอีกเซตหนึ่ง

 

1.) จงตรวจสอบว่า f = {{(x, y):\sqrt{x+1}+\sqrt{y+1}=2}} เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่

เนื่องจากฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับ 2 คู่ ที่ สมาชิกตัวหลังเท่ากัน จะได้ว่าสมาชิกตัวหน้าก็เท่ากันด้วย

ดังนั้น ถ้าให้คู่อันดับ 2 คู่มี y เป็นสมาชิกตัวหลังและให้ x_1 , x_2 เป็นสมาชิกตัวหน้าของคู่อันดับดังกล่าว ถ้า f เป็นฟังก์ชันหนึ่งต่อหนึ่งเราจะต้องแสดงให้ได้ว่า x_1=x_2

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

2.) f(x) = 2x + 1 เป็นฟังก์ชันจาก R ไปทั่วถึง R หรือไม่ เพราะเหตุใด

ฟังก์ชันจาก R ไปทั่วถึง R หมายความว่า โดเมนของฟังก์ชันคือ R และเรนจ์ของฟังก์ชันก็คือ R เหมือนกัน

ตอบ f เป็นฟังก์ชันจาก R ไปทั่วถึง R เพราะ จาก โดเมน คือ  R ซึ่งเป็นจำนวนจริง จากสมบัติของจำนวนจริง (สมบัติปิดการบวกและการคูณ) ทำให้ได้ว่าไม่ว่าจะแทน x เป็นจำนวนจริงตัวใด เมื่อบวกหรือคูณกันแล้วก็ยังได้จำนวนจริงเหมือนเดิม จึงได้ว่าเรนจ์ของ f คือ R

 

3.) กำหนดให้ A = {1, 2, 3}, B = {2, 3, 4}

3.1) f_1 = {(1, 3), (2, 4), (3, 3)} เป็นฟังก์ชันใดบ้างบ้าง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า เรนจ์ของ f เป็นสับเซตของ B

ดังนั้นจะได้ว่า f_1 เป็นฟังก์ชันจาก A ไป B

 

3.2) f_2 = {(2, 2), (3, 3) , (4, 1)} เป็นฟังก์ชันใดบ้าง

จาก คู่อันดับข้างต้น สังเกตดู (4, 1) ตัวหน้าคือสมาชิกของเซต B และตัวหลังเป็นสมาชิกของเซต A แสดงว่า ฟังก์ชันนี้เป็นฟังก์ชันจาก B ไป A แน่นอน

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า สมาชิกในเซต A โดนจับคู่แค่ตัวละครั้ง ทั้ง A และ B สมาชิกทุกตัวมีคู่หมด

ดังนั้น f_2 เป็นฟังก์ชัน 1-1 จาก B ไปทั่วถึง A

 

4.) g(x) = x² + 1 เป็นฟังก์ชัน 1-1 หรือไม่

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

บทพากย์เอราวัณ

บทพากย์เอราวัณ ที่มาของวรรณคดีพากย์โขนอันทรงคุณค่า

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้องรับเข้าสู่เนื้อหาวิชาภาษาไทยที่จะมาให้สาระความรู้ดี ๆ ซึ่งวันนี้เราจะมาเรียนรู้ความเป็นมาของวรรณคดีเรื่องหนึ่งที่มักจะใช้ในการแสดงโขน นั่นก็คือบทพากย์เอราวัณแน่นอนว่าน้อง ๆ ในระดับมัธยมต้นจะต้องได้เรียนเรื่องนี้ เพราะเป็นวรรณคดีอีกเรื่องที่แสดงถึงพระปรีชาสามารถของรัชกาลที่ 2 ในด้านกวีนิพนธ์จากการที่เลือกใช้ถ้อยคำภาษาที่สวยงามเพื่อมาบรรยายถึงลักษณะของช้างเอราวัณได้อย่างดี ดังนั้น ถ้าพร้อมแล้วมาดูกันว่าวันนี้เรามีเนื้อหาที่น่าสนใจอะไรมาฝากน้อง ๆ กันบ้างดีกว่า ประวัติความเป็นมา สำหรับวรรณคดี บทพากย์เอราวัณ เป็นอีกหนึ่งผลงานการพระราชนิพนธ์ในรัชสมัยของพระบาทสมเด็จพระพุทธเลิศหล้านภาลัย (รัชกาลที่ 2) ซึ่งถือเป็นบทที่นิยมนำไปใช้ในการแสดงโขน โดยได้เค้าโครงเรื่องมาจาก “รามายณะ”

สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

ความน่าเชื่อถือของสื่อที่ฟัง

ฟังอย่างไรให้ได้สาระประโยชน์ดี ๆ ด้วยวิธีวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟัง

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้อนรับเข้าสู่เนื้อหาในบทเรียนภาษาไทยกันอีกครั้ง สำหรับบทเรียนในวันนี้ต้องบอกว่ามีประโยชน์มาก ๆ และเราควรจะต้องศึกษาไว้เพื่อนำไปใช้ในการฟัง หรือคัดกรองสิ่งต่าง ๆ รอบตัวที่เรารับฟังมาให้มากขึ้น ซึ่งเราจะพาน้อง ๆ มาฝึกฝนการวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟังกัน เพราะในปัจจุบันเราสามารถรับสารได้หลากหลายรูปแบบมีทั้งประโยชน์ และโทษ ดังนั้น เราจึงต้องมีทักษะนี้ติดตัวไว้แยกแยะว่าสื่อนั้นมีความน่าเชื่อถือมากน้อยแค่ไหน ถ้าน้อง ๆ พร้อมแล้วเรามาเริ่มเรียนกันเลย   ความหมายของความน่าเชื่อถือ และสื่อ ความน่าเชื่อถือ หมายถึง

การอ่านออกเสียงคำควบกล้ำ

การอ่านออกเสียงคำควบกล้ำ อ่านอย่างไรให้ถูกต้อง

ในปัจจุบัน ไม่ว่าจะชมสื่อต่าง ๆ หรือพูดคุยในชีวิตประจำวัน เราก็มักจะเจอคนที่อ่านออกเสียงคำควบกล้ำไม่ชัดอยู่บ่อยครั้ง โดยเฉพาะคำที่เป็น ร หรือ ล ทำให้การสื่อสารอาจผิดพลาดไปเลยก็ได้ ดังนั้น การอ่านออกเสียงคำควบกล้ำ ให้ถูกต้องจึงถือเป็นเรื่องที่สำคัญอย่างมาก บทเรียนในวันนี้ นอกจากน้อง ๆ จะได้เรียนรู้เกี่ยวกับคำควบกล้ำว่ามีอะไรบ้างแล้ว ก็ยังจะได้รู้วิธีอ่านออกเสียงอีกด้วย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำควบกล้ำ คำควบกล้ำ (อักษรควบ) หมายถึง พยัญชนะสองตัวเขียนเรียงกันอยู่ต้นพยางค์และใช้สระเดียวกัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1