ทบทวนสมการเชิงเส้นตัวแปรเดียว

ในบทความนี้นักเรียนจะได้ทราบความหมายของสมการและสมบัติของการเท่ากันที่นำมาใช้ในการหาคำตอบของสมการ
ทบทวนสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จากบทความที่แล้วเราได้เกรินถึงหลักการเบื้องต้นของการแก้สมการเชิงเส้นตัวแปรเดียว วันนี้เราจึงจะมาทบทวนสมการเชิงเส้นตัวแปรเดียวกันอีกครั้ง พร้อมยกตัวอย่างและแสดงวิธีคิดให้น้องๆเข้าใจได้อย่างดี

ความหมายของสมการ

สมการ เป็นประโยคที่แสดงการเท่ากันของจำนวน โดยมีสัญลักษณ์( = ) บอกการเท่ากัน สมการอาจมีตัวแปรหรือไม่มีตัวแปรก็ได้ เช่น

สมการเชิงเส้นตัวแปรเดียว

ความหมายของสมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวเดียว เขียนอยู่ในรูป ax + b = 0 เมื่อ ax + b เป็นพหุนามดีกรี 1 มี x เป็นตัวแปร a , b เป็นค่าคงตัว และ a ≠  0

ตัวอย่างสมการเชิงเส้นตัวแปรเดียว

การแก้สมการ

การแก้สมการ คือ การหาคำตอบของสมการซึ่งทำให้สมการนั้นเป็นจริง ซึ่งต้องใช้สมบัติการเท่ากันซึ่งได้แก่ สมบัติสมมาตร สมบัติการถ่ายทอด สมบัติการบวก และสมบัติการคูณ

คำตอบของสมการ

คำตอบของสมการ คือจำนวนที่แทนค่าของตัวแปรในสมการแล้วทำให้สมการเป็นจริง เช่น

คำตอบของสมการ

การหาคำตอบของสมการนอกจากจะใช้วิธีลองหาจำนวนมาแทนค่าตัวแปรในสมการแล้ว เราจะใช้สมบัติของการเท่ากัน ได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวกและสมบัติการคูณ เพื่อช่วยในการหาคำตอบของสมการได้อีกวิธีหนึ่ง

สมบัติการเท่ากัน

1.สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใดๆ เราอาศัยสมบัติสมมาตรเขียนแสดงการเท่ากันของจำนวนได้สองแบบ ดังตัวอย่าง

1)            a + b = c         หรือ     c = a + b

2)            x – 3 = 2x + 7 หรือ     2x + 7 = x – 3

2.สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติถ่ายทอด ดังตัวอย่าง

1)            ถ้า x = 5 + 7 และ 5 + 7 = 12 แล้วจะสรุปได้ว่า x = 12

2)            ถ้า x = -3y และ -3y = 0.5 แล้วจะสรุปได้ว่า x = 0.5

3.สมบัติการบวก

ถ้า a = b แล้ว a + c = b + c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการบวก ดังตัวอย่าง

1)            ถ้า a = 5 แล้ว a + 3 = 5 + 3                             

2)            ถ้า x + 7 = 2 แล้ว ( x + 7 ) – 7 = 2 – 7            

4.สมบัติการคูณ

ถ้า a = b แล้ว ca = cb เมื่อ a , b  และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการคูณ ดังตัวอย่าง

สมบัติการคูณ

คลิปตัวอย่างเรื่องทบทวนสมการเชิงเส้นตัวแปรเดียว

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

มารยาทในการอ่านที่นักอ่านทุกคนควรรู้

บทเรียนวันนี้เป็นเรื่องง่าย ๆ ที่มักจะถูกละเลย มองข้ามไป นั่นก็คือเรื่องมารยาทในการอ่านนั่นเองค่ะ น้อง ๆ หลายคนคงสงสัยว่ามารยาทในการอ่านนั้นสำคัญอย่างไร ทำไมเราถึงต้องเรียนรู้เรื่องนี้เช่นเดียวกับมารยาทในการฟังและมารยาทในการพูดด้วย เราไปเรียนรู้เรื่องนี้ไปพร้อม ๆ เลยดีกว่าค่ะ มารยาทในการอ่าน   ความหมายของมารยาทในการอ่าน มารยาท หมายถึง กิริยาวาจาที่ถือว่าสุภาพเรียบร้อยถูกกาลเทศะ ส่วนการอ่าน หมายถึง พฤติกรรมการรับสารอย่างหนึ่ง รับรู้เรื่องราวโดยการใช้ตามองแล้วใช้สมองประมวลผลข้อมูลต่าง ๆ เกิดเป็นการรับรู้และความเข้าใจ มารยาทในการอ่านจึงหมายถึง

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก สัญลักษณ์แทนการบวก หรือ   เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย

สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐ สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x +

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1