ทบทวนสมการเชิงเส้นตัวแปรเดียว

ในบทความนี้นักเรียนจะได้ทราบความหมายของสมการและสมบัติของการเท่ากันที่นำมาใช้ในการหาคำตอบของสมการ
ทบทวนสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จากบทความที่แล้วเราได้เกรินถึงหลักการเบื้องต้นของการแก้สมการเชิงเส้นตัวแปรเดียว วันนี้เราจึงจะมาทบทวนสมการเชิงเส้นตัวแปรเดียวกันอีกครั้ง พร้อมยกตัวอย่างและแสดงวิธีคิดให้น้องๆเข้าใจได้อย่างดี

ความหมายของสมการ

สมการ เป็นประโยคที่แสดงการเท่ากันของจำนวน โดยมีสัญลักษณ์( = ) บอกการเท่ากัน สมการอาจมีตัวแปรหรือไม่มีตัวแปรก็ได้ เช่น

สมการเชิงเส้นตัวแปรเดียว

ความหมายของสมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวเดียว เขียนอยู่ในรูป ax + b = 0 เมื่อ ax + b เป็นพหุนามดีกรี 1 มี x เป็นตัวแปร a , b เป็นค่าคงตัว และ a ≠  0

ตัวอย่างสมการเชิงเส้นตัวแปรเดียว

การแก้สมการ

การแก้สมการ คือ การหาคำตอบของสมการซึ่งทำให้สมการนั้นเป็นจริง ซึ่งต้องใช้สมบัติการเท่ากันซึ่งได้แก่ สมบัติสมมาตร สมบัติการถ่ายทอด สมบัติการบวก และสมบัติการคูณ

คำตอบของสมการ

คำตอบของสมการ คือจำนวนที่แทนค่าของตัวแปรในสมการแล้วทำให้สมการเป็นจริง เช่น

คำตอบของสมการ

การหาคำตอบของสมการนอกจากจะใช้วิธีลองหาจำนวนมาแทนค่าตัวแปรในสมการแล้ว เราจะใช้สมบัติของการเท่ากัน ได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวกและสมบัติการคูณ เพื่อช่วยในการหาคำตอบของสมการได้อีกวิธีหนึ่ง

สมบัติการเท่ากัน

1.สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใดๆ เราอาศัยสมบัติสมมาตรเขียนแสดงการเท่ากันของจำนวนได้สองแบบ ดังตัวอย่าง

1)            a + b = c         หรือ     c = a + b

2)            x – 3 = 2x + 7 หรือ     2x + 7 = x – 3

2.สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติถ่ายทอด ดังตัวอย่าง

1)            ถ้า x = 5 + 7 และ 5 + 7 = 12 แล้วจะสรุปได้ว่า x = 12

2)            ถ้า x = -3y และ -3y = 0.5 แล้วจะสรุปได้ว่า x = 0.5

3.สมบัติการบวก

ถ้า a = b แล้ว a + c = b + c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการบวก ดังตัวอย่าง

1)            ถ้า a = 5 แล้ว a + 3 = 5 + 3                             

2)            ถ้า x + 7 = 2 แล้ว ( x + 7 ) – 7 = 2 – 7            

4.สมบัติการคูณ

ถ้า a = b แล้ว ca = cb เมื่อ a , b  และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการคูณ ดังตัวอย่าง

สมบัติการคูณ

คลิปตัวอย่างเรื่องทบทวนสมการเชิงเส้นตัวแปรเดียว

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเขียนแนะนำความรู้

เขียนแนะนำความรู้อย่างไรให้น่าอ่าน แค่ทำตามหลักการต่อไปนี้

บทนำ สวัสดีน้อง ๆ ทุกคน ยินดีต้อนรับเข้าสู่บทเรียนภาษาไทย วันนี้เราได้เตรียมสาระความรู้เกี่ยวกับหลักการเขียนมาให้น้อง ๆ ได้นำไปใช้ประโยชน์กัน โดยเนื้อหาที่เราจะมาเรียนในวันนี้จะเป็นเรื่องของการเขียนเพื่อแนะนำความรู้ ความเข้าใจให้กับผู้อ่าน ซึ่งเราจะมาทำความเข้าใจหลักการง่าย ๆ ที่จะนำไปใช้ในการเขียนให้ความรู้ผู้อื่น โดยที่น้อง ๆ สามารถนำไปใช้ในการเรียนวิชาอื่น ๆ ได้ หรือใช้กับการเรียนในระดับที่สูงขึ้นได้เลย เป็นพื้นฐานการเขียนที่เด็ก ๆ ทุกคนควรได้รับการฝึกฝนจะได้นำไปเขียนได้อย่างถูกต้อง ถ้าพร้อมแล้วเราไปเข้าสู่บทเรียนวันนี้กันเลยดีกว่า    

ม.1 There is_There are ทั้งประโยคบอกเล่า_ คำถาม_ปฏิเสธ

การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้น ม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ตารางแสดงความแตกต่างของ  There is/There are และ  Have/Has นักเรียนลองสังเกตดูความแตกต่างของการใช้ There is/There are กับ Have/has จากตารางด้านล่าง ดูนะคะ

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า  = {2, 3, 8}

there is

There is และ There are ในภาษาอังกฤษ

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เรื่องการใช้ There is และ There are ในภาษาอังกฤษกันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

การเลื่อนขนาน

สำหรับการแปลงทางเรขาคณิตในบทนี้จะกล่าวถึงการแปลงที่จะได้ภาพที่มีรูปร่างเหมือนกันและขนาดเดียวกันกับรูปต้นแบบเสมอ โดยใช้การเลื่อนขนาน

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1