ทบทวนสมการเชิงเส้นตัวแปรเดียว

ในบทความนี้นักเรียนจะได้ทราบความหมายของสมการและสมบัติของการเท่ากันที่นำมาใช้ในการหาคำตอบของสมการ
ทบทวนสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จากบทความที่แล้วเราได้เกรินถึงหลักการเบื้องต้นของการแก้สมการเชิงเส้นตัวแปรเดียว วันนี้เราจึงจะมาทบทวนสมการเชิงเส้นตัวแปรเดียวกันอีกครั้ง พร้อมยกตัวอย่างและแสดงวิธีคิดให้น้องๆเข้าใจได้อย่างดี

ความหมายของสมการ

สมการ เป็นประโยคที่แสดงการเท่ากันของจำนวน โดยมีสัญลักษณ์( = ) บอกการเท่ากัน สมการอาจมีตัวแปรหรือไม่มีตัวแปรก็ได้ เช่น

สมการเชิงเส้นตัวแปรเดียว

ความหมายของสมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวเดียว เขียนอยู่ในรูป ax + b = 0 เมื่อ ax + b เป็นพหุนามดีกรี 1 มี x เป็นตัวแปร a , b เป็นค่าคงตัว และ a ≠  0

ตัวอย่างสมการเชิงเส้นตัวแปรเดียว

การแก้สมการ

การแก้สมการ คือ การหาคำตอบของสมการซึ่งทำให้สมการนั้นเป็นจริง ซึ่งต้องใช้สมบัติการเท่ากันซึ่งได้แก่ สมบัติสมมาตร สมบัติการถ่ายทอด สมบัติการบวก และสมบัติการคูณ

คำตอบของสมการ

คำตอบของสมการ คือจำนวนที่แทนค่าของตัวแปรในสมการแล้วทำให้สมการเป็นจริง เช่น

คำตอบของสมการ

การหาคำตอบของสมการนอกจากจะใช้วิธีลองหาจำนวนมาแทนค่าตัวแปรในสมการแล้ว เราจะใช้สมบัติของการเท่ากัน ได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวกและสมบัติการคูณ เพื่อช่วยในการหาคำตอบของสมการได้อีกวิธีหนึ่ง

สมบัติการเท่ากัน

1.สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใดๆ เราอาศัยสมบัติสมมาตรเขียนแสดงการเท่ากันของจำนวนได้สองแบบ ดังตัวอย่าง

1)            a + b = c         หรือ     c = a + b

2)            x – 3 = 2x + 7 หรือ     2x + 7 = x – 3

2.สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติถ่ายทอด ดังตัวอย่าง

1)            ถ้า x = 5 + 7 และ 5 + 7 = 12 แล้วจะสรุปได้ว่า x = 12

2)            ถ้า x = -3y และ -3y = 0.5 แล้วจะสรุปได้ว่า x = 0.5

3.สมบัติการบวก

ถ้า a = b แล้ว a + c = b + c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการบวก ดังตัวอย่าง

1)            ถ้า a = 5 แล้ว a + 3 = 5 + 3                             

2)            ถ้า x + 7 = 2 แล้ว ( x + 7 ) – 7 = 2 – 7            

4.สมบัติการคูณ

ถ้า a = b แล้ว ca = cb เมื่อ a , b  และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการคูณ ดังตัวอย่าง

สมบัติการคูณ

คลิปตัวอย่างเรื่องทบทวนสมการเชิงเส้นตัวแปรเดียว

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Past Simple Tense เน้น Verb to be

การใช้ Past Simple Tense เน้น Verb to be เกริ่นนำ เกริ่นใจ เรื่องอดีตนั้นไม่ง่ายที่จะลืม โดยเฉพาะอย่างยิ่ง เรื่องราวชีวิตของใครคนหนึ่งที่เราเอาใจใส่ นั่นจึงเป็นเหตุผลว่าทำไมเราควรที่จะให้ความสำคัญกับการทำความเข้าใจเรื่องง่าย ๆ อย่าง Past simple tense ซึ่งเป็นโครงสร้างประโยคที่เราใช้ในการเล่าเรื่องราวในอดีตที่เคยเกิดขึ้นแล้วตั้งแต่เมื่อกี้ ไปจนถึงเรื่องของเมื่อวาน  ภาษาไทยของเราเองก็ใช้โครงสร้างประโยคนี้บ่อย ๆ โดยเฉพาะอย่างยิ่งตอนที่เราอยากจะเล่าเรื่องของเรา ของใครคนอื่นที่เราอยากจะเม้ามอยกับคนรอบข้างอ่ะ

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

ความรู้เกี่ยวกับ การสื่อสาร มีอะไรบ้างที่เราควรรู้?

ความรู้เกี่ยวกับการสื่อสาร เป็นเรื่องที่สำคัญอย่างมากในปัจจุบัน แม้ว่าเราจะสื่อสารกับผู้คนอยู่แล้วทุกวัน แต่จะทำอย่างไรให้ตนเองสามารถสื่อสารได้อย่างถูกต้อง มีเรื่องไหนที่ควรรู้และควรระวัง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการสื่อสารให้ดียิ่งขึ้นไปอีก ถ้าอยากรู้แล้วว่าจะเป็นอย่างไรก็ไปดูกันเลยค่ะ   การสื่อสาร คืออะไร?   เป็นกระบวนการถ่ายทอดหรือแลกเปลี่ยนความคิด ข้อมูล ข้อเท็จจริง ความรู้ ความรู้สึก จากบุคคลหนึ่งไปยังอีกบุคคลหนึ่ง ให้มีความเข้าใจตรงกัน     การสื่อสารสำคัญอย่างมากตั้งแต่ในชีวิตประจำวันไปจนถึงอุตสาหกรรม การปกครอง การเมืองและเศรษฐกิจ

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

NokAcademy_Articles E5

Articles: a/an/the

สวัสดีค่ะนักเรียนชั้น ป. 6 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable Nouns )

เห็นแก่ลูก ศึกษาความเป็นมาบทละครพูดเรื่องแรกของไทย

  บทละครพูด เห็นแก่ลูก เป็นวรรณคดีเรื่องแรกที่น้อง ๆ ม.3 ทุกคนจะได้เรียน ความพิเศษของวรรณคดีไทยเรื่องนี้คือเป็นบทละครพูดเรื่องแรกของไทยอีกทั้งยังได้รับการแปลไปยันต่างประเทศอีก 13 ภาษา วรรณคดีเรื่องนี้มีความสำคัญและมีเนื้อหาเกี่ยวกับอะไร ถึงโด่งดัง เป็นที่รู้จัก และได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปศึกษาประวัติความเป็นมาของวรรณคดีเรื่องนี้กันเลยค่ะ   ความเป็นมา บทละครพูด เห็นแก่ลูก     บทละครพูด เห็นแก่ลูก เป็นพระราชนิพนธ์ในพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว ทรงใช้พระนามแฝงว่าพระขรรค์เพชร

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1