จากบทความที่แล้วเราได้เกรินถึงหลักการเบื้องต้นของการแก้สมการเชิงเส้นตัวแปรเดียว วันนี้เราจึงจะมาทบทวนสมการเชิงเส้นตัวแปรเดียวกันอีกครั้ง พร้อมยกตัวอย่างและแสดงวิธีคิดให้น้องๆเข้าใจได้อย่างดี
ความหมายของสมการ
สมการ เป็นประโยคที่แสดงการเท่ากันของจำนวน โดยมีสัญลักษณ์( = ) บอกการเท่ากัน สมการอาจมีตัวแปรหรือไม่มีตัวแปรก็ได้ เช่น
ความหมายของสมการเชิงเส้นตัวแปรเดียว
สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวเดียว เขียนอยู่ในรูป ax + b = 0 เมื่อ ax + b เป็นพหุนามดีกรี 1 มี x เป็นตัวแปร a , b เป็นค่าคงตัว และ a ≠ 0
การแก้สมการ
การแก้สมการ คือ การหาคำตอบของสมการซึ่งทำให้สมการนั้นเป็นจริง ซึ่งต้องใช้สมบัติการเท่ากันซึ่งได้แก่ สมบัติสมมาตร สมบัติการถ่ายทอด สมบัติการบวก และสมบัติการคูณ
คำตอบของสมการ
คำตอบของสมการ คือจำนวนที่แทนค่าของตัวแปรในสมการแล้วทำให้สมการเป็นจริง เช่น
การหาคำตอบของสมการนอกจากจะใช้วิธีลองหาจำนวนมาแทนค่าตัวแปรในสมการแล้ว เราจะใช้สมบัติของการเท่ากัน ได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวกและสมบัติการคูณ เพื่อช่วยในการหาคำตอบของสมการได้อีกวิธีหนึ่ง
สมบัติการเท่ากัน
1.สมบัติสมมาตร
ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใดๆ เราอาศัยสมบัติสมมาตรเขียนแสดงการเท่ากันของจำนวนได้สองแบบ ดังตัวอย่าง
1) a + b = c หรือ c = a + b
2) x – 3 = 2x + 7 หรือ 2x + 7 = x – 3
2.สมบัติถ่ายทอด
ถ้า a = b และ b = c แล้ว a = c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติถ่ายทอด ดังตัวอย่าง
1) ถ้า x = 5 + 7 และ 5 + 7 = 12 แล้วจะสรุปได้ว่า x = 12
2) ถ้า x = -3y และ -3y = 0.5 แล้วจะสรุปได้ว่า x = 0.5
3.สมบัติการบวก
ถ้า a = b แล้ว a + c = b + c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการบวก ดังตัวอย่าง
1) ถ้า a = 5 แล้ว a + 3 = 5 + 3
2) ถ้า x + 7 = 2 แล้ว ( x + 7 ) – 7 = 2 – 7
4.สมบัติการคูณ
ถ้า a = b แล้ว ca = cb เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการคูณ ดังตัวอย่าง
คลิปตัวอย่างเรื่องทบทวนสมการเชิงเส้นตัวแปรเดียว