ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

             ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้

  1. การหา ห.ร.ม. โดยการหาผลคูณร่วม
  2. การหา ห.ร.ม. โดยการแยกตัวประกอบ
  3. การหา ห.ร.ม. โดยการหาร (หารสั้น)

ก่อนที่น้องจะไปศึกษาวิธีการหา ห.ร.ม. นั้น น้องๆ มาดูบทนิยามของ ตัวหารร่วมหรือตัวประกอบร่วม กันก่อนนะคะ

      ตัวหารร่วม หรือ ตัวประกอบร่วม  ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง จำนวนนับใด ๆ ที่หารจำนวนนับเหล่านั้นได้ลงตัวทุกจำนวน

น้องๆ ทราบหรือไม่ว่า ตัวประกอบของทั้งหมดของ  45  และ  90 มีจำนวนใดบ้าง

ตัวประกอบทั้งหมดของ  45  คือ  1, 3, 5, 9, 15, 45

ตัวประกอบทั้งหมดของ  90  คือ  1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90

พิจารณาตัวประกอบของ  45  และ  90 ว่าจำนวนใดบ้างที่สามารถหารทั้ง  45  และ  90  ได้ลงตัว  จะได้ว่า จำนวนนั้นคือ  1, 3, 5, 9, 15, 45

ต่อไปมาศึกษาวิธีการหารร่วมหรือตัวประกอบร่วม กันนะคะ  

ตัวอย่างที่ 1 จงหาตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12

วิธีทำ  ตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12 สามารถหาได้ ดังนี้

   ตัวประกอบทั้งหมดของ 10 คือ  1, 2, 5, 10

   ตัวประกอบทั้งหมดของ 12 คือ  1, 2, 3, 4, 6, 12

ดังนั้น   ตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12 คือ 1 และ 2

ตัวอย่างที่ 2 จงหาตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18

วิธีทำ   ตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18 สามารถหาได้ ดังนี้

  ตัวประกอบทั้งหมดของ 12 คือ  1, 2, 3, 4, 6, 12

  ตัวประกอบทั้งหมดของ 15 คือ  1, 3, 5, 15

  ตัวประกอบทั้งหมดของ 18 คือ  1, 2,3, 6, 9, 18

ดังนั้น  ตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18 คือ 1 และ 3

ข้อสังเกต เนื่องจาก 1 หารจำนวนนับทุกจำนวนลงตัว ดังนั้น 1 เป็นตัวหารร่วมหรือตัวประกอบร่วมของจำนวนนับทุกจำนวน

เมื่อน้องๆเข้าใจ ตัวหารร่วม หรือ ตัวประกอบร่วม กันดีแล้ว ลำดับต่อไปขอนำเสนอ บทนิยาม ตัวหารร่วมมาก (ห.ร.ม.) ดังนี้

ตัวหารร่วมมาก (ห.ร.ม.)   ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น

เมื่อน้องๆ เข้าใจบทนิยามของ ตัวหารร่วมมาก (ห.ร.ม.) ลำดับต่อไป จะนำเสนอวิธีการหา ห.ร.ม. ทั้ง 3 วิธีกันคะ มาเริ่มทีวิธีแรกกันเลยนะคะ

วิธีที่ 1 การหา ห.ร.ม. โดยการหาผลคูณร่วม

หลักการ

  1. หาตัวหารหรือตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ห.ร.ม. แต่ละจำนวน
  2. พิจารณาตัวหารร่วม หรือตัวประกอบร่วมที่มีค่ามากที่สุด
  3. ห.ร.ม. คือ ตัวหารร่วม หรือตัวประกอบร่วมที่มีค่ามากที่สุด

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการหาผลคูณร่วม เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 3  จงหา  ห.ร.ม.  ของ  12, 18, และ 24  โดยการพิจารณาตัวประกอบ

วิธีทำ  ตัวประกอบทั้งหมดของ  12  คือ  123,  4,  6  และ  12

  ตัวประกอบทั้งหมดของ  18  คือ  1236,  9  และ  18

  ตัวประกอบทั้งหมดของ  24  คือ  123,  4,  6,  8,  12  และ  24

  จะได้ว่า  ตัวประกอบร่วมของ  12,  18,  และ  24  คือ  123 และ  6

  ตัวประกอบร่วมที่มากที่สุดของ  12,  18  และ  24  คือ  6

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.)  ของ  12,  18  และ  24  คือ  6 

ตัวอย่างที่ 4  จงหา   ห.ร.ม.  ของ  18, 27 และ 36 โดยการพิจารณาตัวประกอบ

วิธีทำ  ตัวประกอบทั้งหมดของ  18  คือ  1, 2, 3, 6, 9  และ  18

  ตัวประกอบทั้งหมดของ  27  คือ  1, 3, 9  และ  27

  ตัวประกอบทั้งหมดของ  36  คือ  1, 2, 3, 4, 6, 9, 12, 18  และ  36

  จะได้ว่า  ตัวประกอบร่วมของ  18, 27  และ  36  คือ  1, 3  และ 9

  ตัวประกอบร่วมที่มากที่สุดของ  18, 27  และ  36  คือ   9

ดังนั้น   ตัวหารร่วมมาก (ห.ร.ม.)  ของ  18, 27  และ  36   คือ  9 

การหา ห.ร.ม. โดยใช้วิธีที่ 1 จะเป็นการหาตัวประกอบร่วมที่มีค่ามากที่สุด ต่อไปน้องๆมาศึกษาวิธี การหา ห.ร.ม. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 2 การหา ห.ร.ม. โดยการแยกตัวประกอบ

  1. แยกตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ห.ร.ม. แต่ละจำนวน
  2. พิจารณาตัวประกอบเฉพาะที่ซ้ำกันทุกจำนวน
  3. ห.ร.ม. คือผลคูณของตัวประกอบเฉพาะดังกล่าว

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการแยกตัวประกอบ เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 5  จงหา ห.ร.ม. ของ 40, 72 และ 104  โดยการแยกตัวประกอบ 

วิธีทำ  การแยกตัวประกอบของ  40, 72 และ 104  ทำได้ดังนี้

ห.ร.ม.

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  40, 72 และ 104  คือ  8

ตัวอย่างที่ 6  จงหา  ห.ร.ม.  ของ  108,  180  และ  228  โดยการแยกตัวประกอบ 

วิธีทำ    การแยกตัวประกอบของ  108,  180  และ  228  ทำได้ดังนี้

ห.ร.ม.

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  108,  180  และ  228  คือ  12

หมายเหตุ : การหา ห.ร.ม. ของจำนวนนับ 3 จำนวนใดๆ จะต้องมี 3 จำนวนซ้ำกัน ซึ่งจะต้องเอาจำนวนที่ซ้ำกันมา 1 ตัว มาคูณกัน ดังตัวอย่างข้างต้น  

จะดีกว่ามั้ยคะ ถ้ามีวิธีการที่จะสามารถหา ห.ร.ม. ได้รวดเร็วยิ่งขึ้น แต่ทั้งนี้ทั้งนั้นขึ้นอยู่กับความถนัดของแต่ละบุคคลนะคะ น้องๆ ลองศึกษาวิธีสุดท้ายได้โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ห.ร.ม. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 3 การหา ค.ร.น. โดยการหาร (หารสั้น) 

หลักการ

  1. หาจำนวนเฉพาะที่หารทุกจำนวนได้ลงตัว
  2. หาจำนวนเฉพาะที่หารผลลัพธ์ทุกตัวได้ลงตัว ดำเนินการเช่นนี้ไปเรื่อย ๆ จนไม่มีจำนวนเฉพาะใดหารผลลัพธ์ทุกตัวได้ลงตัว
  3. ห.ร.ม. คือ ผลคูณของจำนวนเฉพาะที่นำไปหารในแต่ละขั้นตอน

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการหาร (หารสั้น) เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 7   จงหา  ห.ร.ม.  ของ 168  และ  264 โดยวิธีตั้งหารสั้น

วิธีทำ         

                               2 )168    264

                               2 )  84    132

                               2 )  42     66

                               3 )  21     33

                                     7     11

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  168  และ  264   คือ  2 x 2 x 2 x 3  =  24

ตัวอย่างที่ 8  จงหา ห.ร.ม. ของ 24 , 60 และ 84  โดยการตั้งหาร

วิธีทำ                                         

                                           2  )  24      60       84

                                           2  )  12      30      42

                                           3  )    6       15      21

                                                     2       5        7

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.)  ของ  24,  60  และ  84  คือ 2 x 2 x 3 = 12

ตัวอย่างที่ 9  จงหา  ห.ร.ม.  ของ  18,  27  และ  36

วิธีทำ              

3 )18     27      36

3 ) 6      9      12

     2      3        4

ดังนั้น ตัวหารร่วมมาก (ห.ร.ม.) ของ 18,  27  และ  36  คือ  3 x 3  =   9

ตัวอย่างที่ 10   จงหา ห.ร.ม.  ของ  40,  72  และ  104  โดยการตั้งหาร

วิธีทำ                                         

2  )    40     72      104

2  )    20     36       52

2  )    10     18       26

          5       9        13

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  40,  72  และ  104  คือ 2 x 2 x 2 = 8

ตัวอย่างที่ 11  จงหา  ห.ร.ม.  ของ  72,  144  และ  216  โดยการตั้งหาร

วิธีทำ                     

2  )   72     144     216    

2  )   36       72     108

2  )   18       36      54 

3  )     9       18      27 

3  )     3        6        9 

           1        2        3 

   ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  72,  144  และ  216  คือ 2 x 2 x 2 x 3 x 3 = 72 

เมื่อน้องๆเรียนรู้เรื่อง ตัวหารร่วมมาก (ห.ร.ม.)  จาก ตัวอย่าง ห.ร.ม. หลายๆตัวอย่าง จะเห็นได้ชัดว่า การหา ห.ร.ม. ไม่ได้เป็นเรื่องยากอย่างที่คิด ลำดับต่อไปที่น้องๆต้องเรียนรู้คือการหา  ตัวคูณร่วมน้อย (ค.ร.น.) ซึ่งจะเป็นการฝึกน้องๆได้มีวิธีการหา ค.ร.น. แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การหา ห.ร.ม.

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา ตัวหารร่วมมาก (ห.ร.ม.) ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค การหา ห.ร.ม. รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

Pronunciation Matters: มาเรียนรู้การออกเสียงพยัญชนะในภาษาอังกฤษกันเถอะ

เชื่อว่าน้องๆ หลายคนที่เรียนภาษาอังกฤษจะต้องได้เรียนการออกเสียงที่ถูกต้องทั้งเสียงพยัญชนะและสระกันมาแล้วบ้าง วันนี้เราจะมาทบทวนและดูตัวอย่างเสียงพยัญชนะ (Consonant Sounds) ในภาษาอังกฤษกันว่าตัวไหนออกเสียงแบบใดได้บ้าง

บทพากย์เอราวัณ

บทพากย์เอราวัณ ที่มาของวรรณคดีพากย์โขนอันทรงคุณค่า

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้องรับเข้าสู่เนื้อหาวิชาภาษาไทยที่จะมาให้สาระความรู้ดี ๆ ซึ่งวันนี้เราจะมาเรียนรู้ความเป็นมาของวรรณคดีเรื่องหนึ่งที่มักจะใช้ในการแสดงโขน นั่นก็คือบทพากย์เอราวัณแน่นอนว่าน้อง ๆ ในระดับมัธยมต้นจะต้องได้เรียนเรื่องนี้ เพราะเป็นวรรณคดีอีกเรื่องที่แสดงถึงพระปรีชาสามารถของรัชกาลที่ 2 ในด้านกวีนิพนธ์จากการที่เลือกใช้ถ้อยคำภาษาที่สวยงามเพื่อมาบรรยายถึงลักษณะของช้างเอราวัณได้อย่างดี ดังนั้น ถ้าพร้อมแล้วมาดูกันว่าวันนี้เรามีเนื้อหาที่น่าสนใจอะไรมาฝากน้อง ๆ กันบ้างดีกว่า ประวัติความเป็นมา สำหรับวรรณคดี บทพากย์เอราวัณ เป็นอีกหนึ่งผลงานการพระราชนิพนธ์ในรัชสมัยของพระบาทสมเด็จพระพุทธเลิศหล้านภาลัย (รัชกาลที่ 2) ซึ่งถือเป็นบทที่นิยมนำไปใช้ในการแสดงโขน โดยได้เค้าโครงเรื่องมาจาก “รามายณะ”

เสียงพยัญชนะ

การออกเสียงพยัญชนะต้นคำและพยัญชนะท้ายคำที่ออกเสียงยากในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การออกเสียงพยัญชนะต่างๆ ที่ขึ้นชื่อว่าออกเสียง “ยาก” ในภาษาอังกฤษ จะมีตัวอะไรกันบ้างนั้นเราไปดูกันเลยครับ

บทละครพูดเรื่องเห็นแก่ลูก

ศึกษาตัวบทและคุณค่าที่อยู่ใน บทละครพูดเรื่องเห็นแก่ลูก

บทละครพูดเรื่องเห็นแก่ลูก เป็นบทละครพูดเรื่องแรกของไทยที่พระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัวเป็นผู้ประพันธ์ โดยมุ่งหวังให้ละครเป็นตัวช่วยกล่อมเกลาจิตใจประชาชน แต่นอกจากตัวบทจะมีความโดดเด่นจนได้รับความนิยมอย่างมากแล้ว ยังแฝงแนวคิดมากมายไว้ในเรื่อง จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้เรื่องพร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ใน บทละครพูดเรื่องเห็นแก่ลูก     ตัวบทที่ 1    พระยาภักดี : ใครวะ อ้ายคำ : อ้างว่าเป็นเกลอเก่าของใต้เท้า

Conjunctions of Time

Conjunctions of time

สวัสดีค่ะนักเรียนชั้นม.5 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้ Conjunctions of time” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด Conjunctions of time คืออะไร   Conjunctions of time คือ คำสันธานที่ถือเป็น Subordinating conjunctions รูปแบบหนึ่งที่เน้นบอกเวลา (time) เช่น whenever (

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1