ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ตัวบ่งปริมาณ

ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์

ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U)

ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ

เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x คืออะไร และมากกว่า 3 จริงไหม ดังนั้น ข้อความนี้ยังไม่เป็นประพจน์

เราจะกำหนดให้ P(x) เป็นประโยคเปิดใดๆ

เราสามารถทำประโยคเปิดให้เป็น “ประพจน์” ได้ 2 วิธี คือ

1. นำสมาชิกในเอกภพสัมพัทธ์ แทนค่าตัวแปรลงไป

เช่น x มากกว่า 3 โดยเอกภพสัมพัทธ์ คือ จำนวนเต็ม

จะเห็นว่า ถ้าเราให้ x เท่ากับ 2 (ซึ่ง 2 เป็นสมาชิกของเอกภพสัมพัทธ์) เราจะได้ว่า ประโยค 2 มากกว่า 3 เป็นเท็จ ดังนั้น ประโยคดังกล่าวจึงเป็นประพจน์

2.) เติม “ตัวบ่งปริมาณ” ซึ่งมีอยู่ 2 ชนิด คือ

2.1) x (อ่านว่า for all x) ใช้แทนคำว่า “สำหรับ x ทุกตัว” คำที่มีความหมายเดียวกับ x ที่เราเห็นกันบ่อยๆ เช่น สำหรับ x ใดๆ, สำหรับ x แต่ละตัว

2.2) x (อ่านว่า for some x)ใช้แทนคำว่า “มี x บางตัว” คำที่เรามักเจอและมีความหมายเหมือน x เช่น มี x อย่างน้อย 1 ตัว

วิธีการเขียนตัวบ่งปริมาณ

เราจะให้ P(x) แทนประโยคเปิด เราจะใช้สัญลักษณ์ xP(x) และ xP(x) 

สมมติถ้าให้ P(x) แทน x+2 ≥ 2 และให้ U ∈ \mathbb{R} เมื่อ \mathbb{R} เป็นเซตของจำนวนจริง

จะได้ x[x+2 ≥ 2] อ่านว่า สำหรับ x ทุกตัว ที่ x+2 ≥ 2

และจะได้ x[x+2 ≥ 2]  อ่านว่า มี x บางตัว ที่ x+2 ≥ 2

**ค่า x ที่จะเอามาพิจารณาได้คือ เลขใดก็ได้ที่เป็นจำนวนจริง แต่!!! ค่าความจริงจะเป็นจริงหรือเท็จนั้นก็อีกเรื่องนะคะ**

ตัวบ่งปริมาณกับตัวเชื่อม

จากที่เรารู้กันว่า เราสามารถเชื่อมประพจน์สองประพจน์โดยใช้ตัวเชื่อมแล้วได้ประพจน์ใหม่ขึ้นมา เรื่องนี้ก็เหมือนกันค่ะ เราสามารถเชื่อมประพจน์ที่มีตัวบ่งปริมาณโดยใช้ตัวเชื่อมที่เคยเรียนมา

มาดูตัวอย่างกันเลยดีกว่าค่ะ

ตัวอย่างที่ 1

กำหนดให้ U = \mathbb{R} เมื่อ \mathbb{R} เป็นเซตของจำนวนจริง

P(x) แทน x เป็นจำนวนนับ

Q(x) แทน x เป็นจำนวนจริง

ข้อความต่อไปนี้มีความหมายเหมือนกัน

  • จำนวนนับทุกตัวเป็นจำนวนจริง
  • สำหรับ x ทุกตัว ถ้า x เป็นจำนวนนับแล้ว x เป็นจำนวนจริง
  • สำหรับ x ทุกตัว ถ้า P(x )แล้ว Q(x )
  • x[P(x) → Q(x)]

ตัวอย่างที่ 2

กำหนดให้

P(x) แทน x เป็นจำนวนตรรกยะ

Q(x) แทน x เป็นจำนวนเฉพาะ

ข้อความต่อไปนี้มีความหมายเหมือนกัน

  • “มี” จำนวนตรรกยะบางตัว “ไม่ใช่” จำนวนเฉพาะ
  • มี x บางตัวซึ่ง P(x) และ ∼Q(x)
  • ∃x[P(x) ∧ ∼Q(x)]

ตัวอย่างของการใช้ ∀ และ  

1.) ให้ P(x) แทน 2x ≥ 10 และ U= {1,3,5,7,9}

ค่า x ที่สามารถแทนลงใน 2x ≥ 10 คือสมาชิกทุกตัวใน U

จากโจทย์ จะได้ว่า ∃x[2x ≥ 10] หมายความว่า มี x บางตัวที่ทำให้ 2x ≥ 10 เป็นจริง

 

2.) ให้ P(x) แทน x² + 2x – 8 = 0  และ U = {-4, 2}

จากโจทย์ จะได้ว่า ∀x[x² + 2x – 8 = 0] หมายความว่า x ทุกตัวใน U ทำให้สมการ x² + 2x – 8 = 0 เป็นจริง

 

ข้อความที่กำหนดให้ต่อไปนี้ ใช้กับข้อที่ 3-5

P(x) แทน x เป็นจำนวนเต็ม

Q(x) แทน x เป็นจำนวนตรรกยะ

E(x) แทน x เป็นจำนวนเต็มคู่

A(x) แทน x  เป็นจำนวนเต็มคี่

3.) จากข้อความข้างต้นสามารถสรุปอะไรได้บ้าง

  • จำนวนเต็มทุกตัวเป็นจำนวนตรรกยะ
  • จำนวนเต็มทุกตัวเป็นจำนวนเต็มคู่หรือจำนวนเต็มคี่

4.) นำคำตอบจากข้อ 3 มาเขียนเป็นสัญลักษณ์

  • จำนวนเต็มทุกตัวเป็นจำนวนตรรกยะ (หมายความว่า สำหรับทุก x ถ้า x เป็นจำนวนเต็มแล้ว x เป็นจำนวนตรรกยะ)

สามารถเขียนสัญลักษณ์ได้ ดังนี้ ∀x[P(x) → Q(x)]

  • จำนวนเต็มทุกตัวเป็นจำนวนคู่หรือจำนวนคี่ (หมายความว่า สำหรับทุก x ถ้า x เป็นจำนวนเต็มแล้ว x เป็นจำนวนเต็มคู่ หรือ จำนวนเต็มคี่)

สามารถเขียนสัญลักษณ์ได้ ดังนี้ ∀x[ P(x) → (E(x) ∨ A(x)) ]

5.) เขียนประโยคจากสัญลักษณ์ที่กำหนดให้

  1. ∃x[Q(x) ∧ P(x)] : มี x บางตัวที่เป็นจำนวนตรรกยะ และ เป็นจำนวนเต็ม
  2. ∃x[E(x) ∧ ∼A(x)] : มีจำนวนเต็มคู่บางตัวซึ่งไม่เป็นจำนวนเต็มคี่

ค่าความจริงของตัวบ่งปริมาณ

 

สำหรับ ∀

  • ∀xP(x) จะมีค่าความจริงเป็น จริง ก็ต่อเมื่อ แทนค่า x ด้วยสมาชิกจากเอกภพสัมพัทธ์ทุกครั้ง P(x) ก็ยังเป็นจริง

เช่น ให้ P(x) แทน x² + 2x – 8 = 0  และ เอกภพสัมพัทธ์ (U) = {-4, 2}

จากตัวอย่างจะเห็นว่า เมื่อเราแทน x ด้วย -4 (ซึ่งเป็นสามาชิกใน U) จะได้ 16 – 8 – 8 = 0 ดังนั้น P(x) จริง

เมื่อแทน x ด้วย 2 (ซึ่งเป็นสมาชิกใน U) จะได้ 4 + 4 – 8 = 0 ดังนั้น P(x) จริง

ดังนั้น ∀xP(x) มีค่าความจริงเป็นจริง

  • ∀xP(x) จะมีค่าความจริงเป็น เท็จ ก็ต่อเมื่อ มีบางตัวใน U ที่เมื่อแทนค่าใน P(x) เป็นเท็จ

เช่น  ให้ P(x) แทน 2x ≥ 10 และ U= {1,3,5,7,9}

ถ้าเราแทนค่า x ด้วย 5, 7, 9 เห็นได้ชัดว่า P(x) เป็นจริง

เมื่อเราลองแทน x ด้วย 1 จะเห็นว่า 2(1) ≥ 10 เป็นเท็จ

ดังนั้นเราสรุปได้เลยว่า ∀xP(x) มีค่าความจริงเป็นเท็จ

สำหรับ ∃

  • ∃xP(x) จะมีค่าความจริงเป็นจริง ก็ต่อเมื่อ มีสมาชิกบางตัวใน U ที่เมื่อแทนค่าใน P(x) แล้วทำให้เป็นจริง (อาจจะมีแค่ 1 ตัว หรือทุกตัวก็ได้นะจ๊ะ)

เช่น ให้ P(x) แทน 2x ≥ 10 และ U= {1,3,5,7,9}

จะเห็นว่า เมื่อแทนค่า x ด้วย 5, 7, 9 จะเห็นว่า  P(5) = 2(5) ≥ 10 , P(7) = 2(7) ≥ 10 และ P(9) = 2(9) ≥ 10 เป็นจริง

ดังนั้น ∃xP(x) มีค่าความจริงเป็นจริง

  • ∃xP(x) จะมีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ แทนค่าสมาชิกใน U แล้วทำให้ P(x) เป็น “เท็จทุกกรณี”

เช่น ให้ P(x) แทน 2x ≤ 10 และ U= {5,7,9}

จะเห็นว่า เมื่อเราแทนค่า x ด้วย 5 , 7, 9 ลงใน 2x ≤ 10 จะได้ว่า P(x) เป็นเท็จทุกกรณี

ดังนั้น ∃xP(x) มีค่าความจริงเป็นเท็จ

ค่าความจริงของ “ตัวบ่งปริมาณ” กรณีที่ประโยคเปิดมี 2 ตัวแปร

 

ในกรณีที่ประโยคเปิดมี 2 ตัวแปร เราจะใช้สัญลักษณ์ P(x, y) และเมื่อเราเติมตัวบ่งปริมาณลงไปแล้ว จะได้ประพจน์ 4 ประพจน์ที่เป็นไปได้ ดังนี้

ให้ a∈ U

  1. ∀x∀y P(x, y)

เป็นจริง ก็ต่อเมื่อ นำสมาชิก a ทุกตัวของ U  มาแทนค่าใน x แล้วทำให้  \forall yP(a, y) เป็นจริง

เป็นเท็จ ก็ต่อเมื่อ มี a บางตัวของ U แทนค่าใน x แล้วทำให้  \forall yP(a, y) เป็นเท็จ

2.∃x∃y P(x, y)

เป็นจริง ก็ต่อเมื่อ มี a บางตัวของ U ที่แทนค่าใน x แล้วทำให้  \exists yP(a, y) เป็นจริง

เป็นเท็จ ก็ต่อเมื่อ นำสมาชิก a ทุกตัวของ U  มาแทนค่าใน x แล้วทำให้  \exists yP(a, y) เป็นเท็จ

3.∀x∃y P(x, y)

เป็นจริง ก็ต่อเมื่อ นำสมาชิก a ทุกตัวของ U  มาแทนค่าใน x แล้วทำให้  \exists yP(a, y) เป็นเป็นจริง

เป็นเท็จ ก็ต่อเมื่อ มี a บางตัวของ U ที่แทนค่าใน x แล้วทำให้  \exists yP(a, y) เป็นเท็จ

4.∃x∀y P(x, y)

เป็นจริง ก็ต่อเมื่อ มี a บางตัวของ U แทนค่าใน x แล้วทำให้  \forall yP(a, y) เป็นจริง

เป็นเท็จ ก็ต่อเมื่อ นำสมาชิก a ทุกตัวของ U  มาแทนค่าใน x แล้วทำให้  \forall yP(a, y) เป็นเท็จ

 

ถ้าน้องๆอ่านแล้วยังงงๆเราลองมาดูตัวอย่างกันค่ะ

ตัวอย่างโจทย์เกี่ยวกับค่าความจริงของตัวบ่งปริมาณ

 

พิจารณาประพจน์ต่อไปนี้ว่าเป็นจริงหรือเท็จ

ให้ U เป็นเซตของจำนวนเต็ม

1.) ∀x[x ≠ x²]

แนวคำตอบ เป็นเท็จ เพราะ เมื่อ แทน x = 1 จะเห็นว่า 1 = 1²

2.) ∃x[x² ≥ 0]

แนวคำตอบ เป็นจริง เพราะ เมื่อเราลองแทนค่า x = 1 จะเห็นว่า 1² ≥ 0 (∃ : เป็นจริงแค่กรณีเดียวก็ถือว่าประพจน์เป็นจริงแล้ว)

3.) ∃x[x + 2 = x]

แนวคำตอบ เป็นเท็จ เพราะ ในระบบจำนวนจริงนั้น มีแค่ x + 0 = x ดังนั้น จึงไม่มี x ที่ทำให้ x +2 = 0

 

พิจารณาประพจน์ต่อไปนี้ว่าเป็นจริงหรือเท็จ

ให้ U = {-1, 0, 1}

1.) ∀x∀y[x² – y = y² – x] (หมายความว่า x ทุกตัว ทำให้ y ทุกตัวเป็นจริง)

แนวคำตอบ เป็นเท็จ เพราะ เมื่อแทน x = -1 และ y = 1 จะได้ (-1)²- 1 = 1² – (-1)  ⇒  1 – 1  = 1 + 1 ⇒ 0 = 1 (เป็นเท็จ)

**∀ : เป็นเท็จแค่กรณีเดียวก็ถือว่าเป็นประพจน์นั้นเป็นเท็จ

วิธีคิดอย่างละเอียด :

ตัวบ่งปริมาณ

แต่สำหรับคนที่เชี่ยวชาญแล้ว เพื่อเป็นการประหยัดเวลา ให้เราลองคิดว่ากรณีไหนบ้างที่จะทำให้เป็นเท็จ แล้วลองแทนค่า x y แค่กรณีนั้นก็พอ ถ้าได้คำตอบออกมาเป็นเท็จจริงก็สามารถสรุปได้เลย

 

2.) ∀x∃y[x² – y = y² – x] (หมายความว่า x ทุกตัว ทำให้ y บางตัวเป็นจริง)

แนวคำตอบ เป็นจริง เพราะ เมื่อแทน -1, 0 และ 1 ใน x แล้วจะได้

จะเห็นว่ามีสมาชิกบางตัวของ U ที่เมื่อแทนค่าลงใน y แล้วเป็นจริง

 

3.) ∃x∀y[x² – y ≠ y² – x] (หมายความว่า มี x บางตัว ที่ทำให้ y ทุกตัวเป็นจริง)

แนวคำตอบ เป็นเท็จ เพราะ

4.) ∃x∃y[2x + 1 ≤ y] (หมายความว่า มี x บางตัว ที่ทำให้ y บางตัวเป็นจริง)

แนวคำตอบ เป็นจริงเพราะ เมื่อลองแทน x = -1 และ y = 1 จะได้ 2(-1) + 1 ≤ 1  ⇒  -2 + 1 ≤ 1  ⇒  -1 ≤ 1 (เป็นจริง)

 

สรุป

  1. ตัวบ่งปริมาณ มี 2 ชนิด คือ ∀ (ทุกตัว) ∃ (บางตัว)
  2. เราสามารถเชื่อมประพจน์ที่มีตัวบ่งปริมาณ 2 ประพจน์ได้ โดยใช้ตัวเชื่อมของประพจน์
  3. กรณี 1 ตัวแปร การหาค่าความจริงจะไม่ซับซ้อนมาก
  4. กรณี 2 ตัวแปร การหาค่าความจริงค่อนข้างซับซ้อน ให้แทนค่าใน x ก่อน แล้วค่อยแทนค่าใน y ทีหลัง
  5. แน่นอนค่ะ อะไรที่ง่ายๆ จะไม่ค่อยออกสอบ(แต่ก็ไม่ได้แปลว่าจะไม่ออกนะคะ) ดังนั้น ให้ศึกษากรณี 2 ตัวแปรให้เยอะๆนะคะ เพราะถ้าทำ 2 ตัวแปรได้ 1 ตัวแปรก็คงชิลๆแล้วค่ะ

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Past Simple Tense เน้น Verb to be

การใช้ Past Simple Tense เน้น Verb to be เกริ่นนำ เกริ่นใจ เรื่องอดีตนั้นไม่ง่ายที่จะลืม โดยเฉพาะอย่างยิ่ง เรื่องราวชีวิตของใครคนหนึ่งที่เราเอาใจใส่ นั่นจึงเป็นเหตุผลว่าทำไมเราควรที่จะให้ความสำคัญกับการทำความเข้าใจเรื่องง่าย ๆ อย่าง Past simple tense ซึ่งเป็นโครงสร้างประโยคที่เราใช้ในการเล่าเรื่องราวในอดีตที่เคยเกิดขึ้นแล้วตั้งแต่เมื่อกี้ ไปจนถึงเรื่องของเมื่อวาน  ภาษาไทยของเราเองก็ใช้โครงสร้างประโยคนี้บ่อย ๆ โดยเฉพาะอย่างยิ่งตอนที่เราอยากจะเล่าเรื่องของเรา ของใครคนอื่นที่เราอยากจะเม้ามอยกับคนรอบข้างอ่ะ

Profile-Have has got P.5

ทบทวนการใช้ ” Have/has got “

สวัสดีค่ะนักเรียนป. 5 ที่น่ารักทุกคน วันนี้เราจะไปทบทวนการใช้  Have/has got ในภาษาอังกฤษกันค่ะ ซึ่งก่อนอื่นต้อง มาทำความรู้จักกับ Verb to have กันก่อนซึ่ง เจ้า Verb to have ที่เราอาจจะคุ้นหูบ่อยๆ เช่น  Have a wonderful day. ขอให้มีวันที่ดีนะ เมื่อเราต้องการจบบทสนทนา

กาพย์พระไชยสุริยา ศึกษาตัวบทที่น่าสนใจและคุณค่าที่อยู่ในเรื่อง

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นวรรณคดีที่ทรงคุณค่า เป็นแบบเรียนภาษาไทยที่มีมาแต่โบราณ นอกจากนี้ยังสอนเรื่องราวต่าง ๆ อีกมากมาก หลังจากที่ได้เรียนรู้เกี่ยวกับประวัติความเป็นมา ลักษณะคำประพันธ์และเนื้อเรื่องกันไปแล้ว เรื่องต่อไปที่น้อง ๆ จะได้เรียนรู้ก็คือตัวบทเด่น ๆ ที่น่าสนใจในเรื่องกาพย์พระไชยสุริยาค่ะ เรามาดูกันดีกว่านะคะว่าในกาพย์พระไชยสุริยาจะมีตัวบทไหนเด่น ๆ และมีคุณค่าอย่างไรบ้าง   ตัวบทที่น่าสนใจในกาพย์พระไชยสุริยา   ลักษณะคำประพันธ์ : กาพย์สุรางคนางค์ 28  

ความเป็นมาของบทละครเรื่องรามเกียรติ์ ตอน นารายณ์ปราบนนทก

บทละครเรื่องรามเกียรติ์ เป็นวรรณคดีที่สำคัญและมีอิทธิพลต่อความคิดความเชื่อของคนไทยมาอย่างยาวนาน น้อง ๆ หลายคนก็คงจะรู้จักและเคยเห็นผ่านตากันมาบ้างตามสื่อต่าง ๆ แต่ทราบไหมคะว่าวรรณคดีเรื่องนี้มีที่มาอย่างไร และทำไมถึงมาเป็นบทละคร มีความสำคัญอย่างไรจึงมาอยู่ในบทเรียนวิชาภาษาไทย เราไปดูพร้อม ๆ กันเลยค่ะ   ความเป็นมาของบทละครเรื่องรามเกียรติ์     รามเกียรติ์ เป็นวรรณคดีที่ได้รับอิทธิพลและมีเค้าโครงเรื่องมาจากมหากาพย์รามายณะที่ฤๅษีวาลมีกิ ชาวอินเดียเป็นคนแต่งขึ้นเป็นภาษาสันสกฤต แม้จะไม่ปรากฏปีที่วรรณคดีเรื่องดังกล่าวเข้ามาเผยแผ่ในไทยอย่างแน่ชัด แต่ด้วยจากหลักฐานทางประวัติศาสตร์ก็ทำให้นักวิชาการคาดการณ์ว่าเป็นช่วงสมัยอยุธยา และในสมัยกรุงธนบุรี พระเจ้าตากสินได้ทรงประพันธ์เพื่อให้ละครหลวงเล่น ก่อนที่ต่อมาสมเด็จพระพุทธยอดฟ้าจุฬาโลก รัชกาลที่

คุณศัพท์บอกความรู้สึก

การใช้คำคุณศัพท์และการบอกความรู้สึก

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Descriptive Adjective การใช้คำคุณศัพท์บอกลักษณะและความรู้สึก กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

เตรียมสอบเข้า ม.1 โรงเรียนสวนกุหลาบวิทยาลัย

เตรียมสอบเข้าม.1 โรงเรียนสวนกุหลาบวิทยาลัย สวัสดีค่ะน้อง ๆ วันนี้มาพบกับพี่แอดมินและ Nock Academy อีกเช่นเคย ซึ่งเรายังคงอยู่กับหัวข้อของการเตรียมสอบเข้าม.1กันนะคะ วันนี้แอดมินจะพาน้อง ๆ ไปรู้จักกับโรงเรียนสวนกุหลาบวิทยาและการเตรียมตัวสอบเข้าในระดับชั้นม.1ของโรงเรียนแห่งนี้กันค่ะ ก่อนอื่นแอดมินต้องขอกล่าวประวัติคร่าว ๆ ของโรงเรียนให้ทุกคนได้รู้จักกันก่อนนะคะ โรงเรียนสวนกุหลาบวิทยาเป็นโรงเรียนชายล้วนที่ก่อตั้งขึ้นมาในสมัยพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว (รัชกาลที่ 5) ถือเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย ที่มีความโดดเด่นในเรื่องของวิชาการ ภาษาและความเป็นผู้นำ โดยศิษย์เก่าที่สำเร็จการศึกษามาจากโรงเรียนสวนกุหลาบวิทยาลัยแห่งนี้หลายคนเป็นผู้ที่มีชื่อเสียงและประสบความเร็จจึงทำให้ชื่อเสียงของโรงเรียนสวนกุหลาบวิทยาลัยนั้นเป็นที่รู้จักกันอย่างแพร่หลายในสังคมไทยมาอย่างยาวนาน หลักสูตรสวนกุหลาบวิทยาลัย ม.ต้น ในปัจจุบันโรงเรียนสวนกุหลาบวิทยาลัยได้มีการปรังปรุงและพัฒนาหลักสูตรให้มีความเท่าทันสังคมไทยในปัจจุบันมากยิ่งขึ้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1