จำนวนตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนตรรกยะ และการเปลี่ยนเศษส่วนเป็นทศนิยมหรือทศนิยมเป็นเศษส่วน
จำนวนตรรกยะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในชีวิตประจำวันมความจำเป็นในการใช้จำนวนตัวเลขต่างๆ ซึ่งเกิดปัญหาขึ้นมากมายเมื่อนำจำนวนบางคู่มาลบกัน หารกัน แล้วกระทำไม่ได้ จึงคิดค้นหลักการจำนวนตรรกยะ นี้ทำให้ปัญหาที่เกิดขึ้นหายไป เช่น ช่วยแก้ปัญหาการหาคำตอบของสมการ เป็นต้น

ความหมายของจำนวนตรรกยะ

ตรรกยะ

ตัวอย่างจำนวนตรรกยะ

ตัวอย่างตรรกยะ

ในทำนองเดียวกันกับเศษส่วนอื่นๆ ก็สามารถเปลี่ยนเป็นทศนิยมได้ ดังนี้

ตรรกยะกับทศนิยม

จะเห็นว่าเศษส่วนทุกจำนวนสามารถเปลี่ยนเป็นทศนิยมได้ และทศนิยมที่ได้ก็จะมี 2 ลักษณะด้วยกัน คือ ทศนิยมแบบซ้ำศูนย์ กับทศนิยมแบบไม่ซ้ำศูนย์

ทศนิยมแบบซ้ำศูนย์ เช่น 1.20.  แต่เวลาเขียนจะเป็น 1.2 เท่านั้น บางครั้งจึงเรียกว่าเป็นทศนิยมแบบรู้จบ ซึ่งสามารถนับจำนวนทศนิมที่อยู่หลังจุดได้

ทศนิยมซ้ำที่ไม่ใช่ศูนย์ เช่น เป็นต้น ทศนิยมเหล่านี้จะเรียกว่าทศนิยมแบบรู้จบแบบซ้ำ เพราะไม่สามารถนับจำนวนตัวเลขที่อยู่หลังจุดได้ แต่สามารถบอกถึงทศนิยมตัวต่อไปได้ว่าเป็นตัวใด

เมื่อเราสามารถขียนเศษส่วนเป็นทศนิยมได้ ดังนั้นในทางกลับกันเราก็สามารเปลี่ยนทศนิยมซ้ำศูนย์หรือซ้ำอื่นๆ ให้เป็นเศษส่วนได้ดังตัวอย่างต่อไปนี้

ทศนิยมซ้ำ

จากที่กล่าวมาพบว่า เศษส่วนสามารถเขียนให้อยู่ในรูปทศนิยมซ้ำ หรือทศนิยมซ้ำสามารถเขียนให้อยู่ในรูปเศษส่วนได้ ดังนั้นจึงกล่าวได้ว่า

แผนผังจำนวนตรรกยะ

ตัวอย่างคลิปเรื่องจำนวนตรรกยะ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้พจนานุกรม เรียนรู้วิธีหาคำให้เจอได้อย่างทันใจ

​พจนานุกรม มาจากคำภาษาบาลีว่า วจน (อ่านว่า วะ-จะ-นะ) ภาษาไทยแผลงเป็น พจน์ แปลว่า คำ คำพูด ถ้อยคำ กับคำว่า อนุกรม แปลว่า ลำดับ เมื่อรวมกันแล้วพจนานุกรมจึงหมายถึงหนังสือที่รวบรวมคำโดยจัดเรียงคำตามลำดับตัวอักษร แต่ด้วยความที่คำในภาษาไทยของเรานั้นมีมากมาย ทำให้น้อง ๆ หลายคนอาจจะมีท้อใจบ้างเมื่อเห็นความหนาของเล่มพจนานุกรม ไม่รู้จะหาคำที่ต้องการได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงวิธี การใช้พจนานุกรม

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

การเปรียบเทียบจำนวนเต็ม

การเปรียบเทียบจำนวนเต็ม

ทบทวนจำนวนเต็ม บทความนี้จะทำให้น้องๆ เข้าใจ การเปรียบเทียบจำนวนเต็ม ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย น้องๆรู้จัก จำนวนเต็ม กันแล้ว แต่หลายคนยังไม่สามาถเปรียบเทียบความมากน้อยของจำนวนเต็มเหล่านั้นได้ ซึ่งถ้าน้องๆ เคยเรียนเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละมาแล้ว เรื่องนี้จะกลายเป็นเรื่องง่ายดาย ซึ่งได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ทบทวนเรื่องจำนวนเต็ม  เช่น                                                                                                     25 ,  9  , -5 , 5.5 ,

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า  = {2, 3, 8}

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1