ความรู้เบื้องต้นเกี่ยวกับเซต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เซตคืออะไร?

เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ

ทำไมต้องเรียนเซต

เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น

ความรู้เบื้องต้นเกี่ยวกับเซต

เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น

สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ a,e,i,o,u

การเขียนเซต

การเขียนเซตจะเขียนได้ 2 วิธี

1.) เขียนแบบแจกแจงสมาชิก คือการเขียนสมาชิกไว้ในวงเล็บปีกกา “{ }”แล้วคั่นสมาชิกแต่ละตัวด้วย “,” เช่น

ให้ A แทนเซตของจำนวนนับที่น้อยกว่า 10

ดังนั้น A = {1,2,3,4,5,6,7,8,9} 

2.) เขียนแบบบอกเงื่อนไข คือการกำหนดตัวแปรขึ้นมาแล้วใส่เงื่อนไขให้ตัวแปรนั้น เช่น

A = {x|x ∈ N และ x < 10}  จากข้อความนี้ แปลได้ว่า A เท่ากับ x โดยที่ x เป็นสมาชิกของจำนวนนับและ x น้อยกว่า 10 

“|” แทนคำว่า โดยที่ หรืออาจจะใช้ “:” แทนคำว่าโดยที่ก็ได้

ประเภทของเซต

1.) เซตว่าง (Empty set) คือเซตที่มีจำนวนสมาชิกเป็น 0 โดยจะใช้สัญลักษณ์ Ø หรือ { } แทน เซตว่าง

เช่น ให้ A แทนเซตของจำนวนเดือนที่มี 32 วัน เราจะเห็นว่าไม่มีเดือนไหนที่มี 32 วัน ดังนั้น A = Ø หรือ A = { }

2.) เซตจำกัด (Finite set) คือ เซตที่สามารถระบุจำนวนสมาชิกได้

เช่น เซตของของจำนวนนับที่น้อยกว่า 10  สามารถเขียนได้ดังนี้ {1,2,3,4,5,6,7,8,9}  จะเห็นว่ามีจำนวนสมาชิกเท่ากับ 9

**เซตว่าง เป็นเซตจำกัด เนื่องจากมีจำนวนสมาชิกเท่ากับ 0**

3.) เซตอนันต์ (infinite set) คือ เซตที่ไม่สามารถระบุจำนวนสมาชิกได้ เช่น

เซตของจำนวนนับ {1,2,3,…} เป็นเซตอนันต์ เพราะเราไม่สามารถบอกได้ว่ามีจำนวนสมาชิกเท่าไหร่

เซตของจำนวนเต็ม {…,-3,-2,-1,0,1,2,3,…} เป็นเซตอนันต์

**{1,2,3,…} หมายถึง มีจำนวนอื่นต่อไปอีกเรื่อยๆ

 

ตัวอย่าง

 

1.)

 

 

 

 

A = {1,2,4,5,8}

จากรูปจะได้ว่า

>> สมาชิกของ A ประกอบด้วย 1,2,4,5,8

>> จำนวนสมาชิกของ A เท่ากับ 5

>> A เป็นเซตจำกัด

 

2.)

 

 

 

 

 

A = {1,3,5}           B = {2,4,6}

จากรูป สามารถบอกได้ว่า

>> 1,3,5 เป็นสมาชิกของ A แต่ไม่เป็นสมาชิกของ B

>> 2,4,6 เป็นสมาชิกของ B แต่ไม่เป็นสมาชิกของ A

>> 0,7,8,9 ไม่เป็นสมาชิก ของ A และไม่เป็นสมาชิกของ B

>> A และ B เป็นเซตจำกัด

>> 0,1,2,3,4,5,6,7,8,9 เป็นสมาชิก ของ U

โดยที่ U คือเอกภพสัมพัทธ์

 

3.)ให้ B เป็นเซตของจำนวนเต็มคู่ที่มากกว่า 0

จะได้ว่า B = {2,4,6,8,…} จะเห็นว่าเราไม่สามารถระบุจำนวนสมาชิกของเซต B ได้ ดังนั้น B เป็นเซตอนันต์

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จุด

จุด : เรขาคณิตวิเคราะห์

จุด จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น   ระยะทางระหว่างจุดสองจุด เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร โดยจะกำหนดให้  และ  เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก ตัวอย่าง ระยะห่างระหว่าง A(1,1) และ

อัตราส่วนของจำนวนหลายๆ จำนวน

อัตราส่วนของจำนวนหลายๆ จำนวน

ในบทความนี้เราจะได้เรียนรู้หลักการเขียนอัตราส่วนแทนการเปรียบเทียบปริมาณของสิ่งต่างๆที่มากกว่า 2 สิ่งขึ้นไปได้ โดยใช้ความรู้เกี่ยวกับอัตราส่วนของจํานวนหลายๆจํานวนในการแก้ปัญหาหรือสถานการณ์ต่าง ๆได้

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

โจทย์ปัญหาการวัด ม.2

ในบทความนี้เราจะได้เรียนรู้ตัวอย่างโจทย์การแปลงหน่วย และหาพื้นที่ของรูปเรขาคณิตต่างๆ พร้อมทั้งเรียนรู้การใช้สูตรที่เร็วขึ้น

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1