การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว

พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2

พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² + bx + c โดยที่ a, b และ c เป็นค่าคงที่ และ a ≠ 0

ค่าคงที่ คือ ค่าที่ไม่เปลี่ยนแปลง พูดง่ายๆก็คือ เป็นตัวเลขตัวหนึ่ง

สาเหตุที่ a ≠ 0 เพราะ ถ้าเราสมมติให้ a เป็น 0 เราจะได้ว่า 0x² + bx + c = bx + c จะเห็นว่า เมื่อ a = 0 แล้ว ดีกรีสูงสุดก็คือ 1 มันจะกลายเป็น พหุนามดีกรี 1 ดังนั้น a เลยเป็น 0 ไม่ได้นั่นเองค่ะ

แต่ b และ c เป็น 0 ได้ เพราะ ดีกรียังคงเป็น 2 ก็ยังคงเป็นพหุนามดีกรี 2 อยู่

 

ตัวอย่าง พหุนามดีกรี 2

x² + 2x + 1 จะได้ว่า a = 1, b = 2, c = 1 และเลขยกกำลังสูงสุดคือ 2

2x² + 3x + 5 จะได้ว่า a = 2, b = 3, c = เลขยกกำลังสูงสุดคือ 2

 

เราลองสังเกต (x+2)(x+5) เราลองกระจายดู จะได้ว่า

การแยกตัวประกอบพหุนาม

ทำย้อนกลับ x² + 7x + 10 เราต้องคิดก่อนว่า ตัวเลข 2 ตัวใดที่คูณกันแล้วได้ 10 บวกกันแล้วได้ 7

10 = 1 × 10 = 2 × 5 เลขที่ คูณกันได้ 10 มี 2 กรณี คือ 1 กับ 10 และ 2 กับ 5

จากนั้นเรานำ เลขทั้ง 2 กรณี มาพิจารณาว่า กรณีไหนที่บวกกันแล้ว ได้เท่ากับ 7

1 + 10 = 11

2 + 5 = 7

ดังนั้น 2 กับ 5 คือตัวที่ บวกกันแล้วได้ 7 คูณกันแล้วได้ 10

ดังนั้น x² + 7x + 10 = (x+2)(x+5)

พหุนามในรูปกำลังสองสมบูรณ์และผลต่างกำลังสอง

การแยกตัวประกอบในรูปกำลังสองสมบูรณ์

แทน หน้า

แทน หลัง

(น + ล)² = น² + 2นล + ล²

(น – ล)² = น² – 2นล + ล²

ตัวอย่าง

1.) (x + 3)² = x² + 2(3)x + 3² = x² + 6x + 9

2.) (2x – 5) = (2x)² – 2(2)(5)x + 5² = 4x² – 20x +25

การแยกตัวประกอบในรูปผลต่างกำลังสอง

น² – ล² = (น – ล)(น + ล)

ตัวอย่าง

x² – 2² = (x – 2)(x + 2)

x² – 16 = (x – 4)(x + 4)

 

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a = 1

กรณี a = 1 พหุนามจะอยู่ในรูป x² + bx + c โดยที่ b, c เป็นค่าคงที่ใดๆ เราจะหาจำนวน 2 จำนวนที่คูณกันแล้วเท่ากับ c และ บวกกันแล้วเท่ากับ b

1.) x² + 5x + 4

วิธีทำ จากโจทย์ได้ว่า a = 1, b = 5 และ c = 4

พิจารณาว่า จำนวน 2 จำนวนใด ที่คูณกันแล้วได้ 4

4 = 1 × 4 = 2 × 2

จากนั้นพิจารณาว่า กรณีไหนที่ บวกกันแล้วได้ 5

จะได้ว่า 1 + 4 = 5

ดังนั้น x² + 5x + 4 = (x + 1)(x + 4)

น้องๆสามารถตรวจคำตอบได้ โดยการคูณกระจาย ถ้ากระจายเสร็จแล้วได้ตรงกับโจทย์แสดงว่าแยกตัวประกอบถูกแล้วนั่นเอง

2.) x² – 2x +1

วิธีทำ จากโจทย์ ได้ว่า  a = 1, b = -2 และ c = 1

พิจารณาว่า จำนวนใดคูณกันแล้วได้เท่ากับ 1 และบวกกันได้เท่ากับ -2

1 = 1 × 1 = (-1) × (-1)

จากนั้น พิจารณาว่า กรณีใดที่บวกกันแล้วได้ -2

จะได้ว่า (-1) + (-1) = -2

ดังนั้น x² – 2x +1 = (x – 1)(x – 1)

 

3.) x² – 2x -35

วิธีทำ จากโจทย์ จะได้ว่า a = 1, b = -2 และ c = -35

พิจารณา จำนวนที่ คูณกันแล้วได้ -35 การที่คูณแล้วจะได้ -35 นั้น ตัวหนึ่งต้องเป็นจำนวนบวก และอีกตัวต้องเป็นจำนวนลบ

-35 = (-1) × 35 = 1 × (-35) = (-5) × 7 = 5 × (-7)  ได้ 4 กรณี

จากนั้นพิจารณากรณีทั้ง 4 ว่ากรณีไหนบวกกันแล้วได้เท่ากับ -2

จะได้ว่า (-7) + 5 = -2

ดังนั้น  x² – 2x -35 = (x – 7)(x + 2)

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a ≠ 1

 

1.) 2x² + 5x + 2

วิธีทำ จากโจทย์จะได้ a = 2, b = 5, c = 2

การแยกตัวประกอบพหุนาม

2.) -x² – 4x +5

วิธีทำ a = -1, b = -4, c = 5

การแยกตัวประกอบพหุนาม

3.) 6x² + 7x + 2

วิธีทำ  a = 6, b = 7, c = 2

การแยกตัวประกอบพหุนาม

 

 วีดิโอการแยกตัวประกอบพุหนาม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้เรื่องการสร้างคำประสมในภาษาไทย

การสร้างคำประสม   คำพูดที่เราพูดกันอยู่ทุกวันนั้น ๆ น้องรู้ไหมคะว่ามีที่มาอย่างไร ทำไมถึงเกิดเป็นคำนี้ให้เราเอามาพูดกันได้ นั่นก็เพราะว่าในภาษาไทยเรานั้นมีสิ่งที่เรียกว่าการสร้างคำอยู่นั่นเองค่ะ ซึ่งการสร้างคำก็มีทั้งคำที่ถูกสร้างขึ้นใหม่โดยเฉพาะ เป็นคำมูล คำไทยแท้ กับอีกลักษณะคือการสร้างคำจากคำมูลนั่นเองค่ะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้การสร้างคำประสมในภาษาไทย คำประสมคือคำแบบใดบ้าง เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   คำประสม     คำประสม หมายถึงคำที่เกิดจากนำคำ 2

Profile of Signal Words

การใช้ Signal Words ในภาษาอังกฤษ

  บทนำ   สวัสดีค่ะนักเรียน ม.1 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วยการใช้ คำลำดับความสำคัญ (Signal Words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

Profile_imperative sentence

การใช้ประโยคคำสั่ง หรือ Imperative sentence ในชีวิตประจำวัน

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาไปเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง หรือ Imperative sentence ในชีวิตประจำวัน กันนะคะ ซึ่งเราจะเจอประโยคเหล่านี้ตั้งแต่ตื่นนอน ทานข้าว เดินไปโรงเรียน ไปดูหนัง ข้ามถนน ข้ามสะพาน ขึ้นแท็กซี่ และในกิจกรรมอื่นๆอีกมากมาย หากว่าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     คือประโยคที่เจอบ่อยเมื่อต้องพูด ให้คำคำปรึกษา

จำนวนตรรกยะ

จำนวนตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนตรรกยะ และการเปลี่ยนเศษส่วนเป็นทศนิยมหรือทศนิยมเป็นเศษส่วน

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1