การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐

ตัวอย่างที่ 1

ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล

  • โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง

(โจทย์กำหนดข้อมูลมาให้ 2 ข้อมูล คือ 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุด

รวมกันอยู่ 68 ผล และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล)

  • โจทย์ถามหาอะไร

(จำนวนมะม่วงและมังคุดในเข่ง)

  • สามารถนำความรู้เกี่ยวกับการแก้ระบบสมการมาใช้ในการแก้ปัญหานี้ได้อย่างไร

(ในการแก้ระบบสมการเชิงเส้นสองตัวแปร ต้องมีตัวแปรสองตัว นั่นคือควรกำหนดตัวแปร x

และตัวแปร y ก่อน)

  • กำหนดให้ตัวแปร x แทนข้อมูลใด

(ให้ x แทน จำนวนมะม่วง)

  • กำหนดให้ตัวแปร y แทนข้อมูลใด

(ให้ y แทน จำนวนมังคุด)

  • สร้างสมการได้อย่างไร

(จากข้อมูล 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล

เขียนเป็นสัญลักษณ์ได้ว่า x + y = 68 และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล

เขียนเป็นสัญลักษณ์ได้ว่า y – x = 18)

  • สามารถแก้ระบบสมการหาค่า x และ y อย่างไร

จากระบบสมการ

x + y = 68          ———-(1)

y – x  = 18          ———-(2)

นำ  (1)  +  (2)  ;   2y  =  86

         y  =  86 ÷ 2

                                                  y  =  43

แทนค่า  y = 43 ในสมการ  (1) จะได้

x + 43 =  68

x  =  68 – 43

x  =  25

ดังนั้น  เข่งใบนี้มีมะม่วง 25 ผล และมังคุด 43 ผล

ตัวอย่างที่ 2

กระเป๋าใบบหนึ่งบรรจุเหรียญห้าบาทและเหรียญสิบบาท จำนวน 25 เหรียญ เป็นเงิน 180 บาท จงหาจำนวนของเหรียญแต่ละชนิด

วิธีทำ  ให้มีเหรียญสิบบาทเป็น x เหรียญ คิดเป็นเงิน  10x  บาท

และมีเหรียญห้าบาทเป็น y เหรียญ คิดเป็นเงิน  5y  บาท

จากโจทย์มีเหรียญจำนวน 25 เหรียญ

เขียนเป็นสมการได้เป็น                  x + y = 25                 ———-(1)

10x + 5y = 180              ———-(2)

(1) × 5 ;                                     5x + 5y = 125              ———-(3)

(2) – (3);                                     5x = 55

  x = 55 ÷ 5

                                                      x = 11

แทน x = 1 ในสมการ (1) จะได้     11 + y = 25

           y = 25 – 11 

                                                               y = 14

ดังนั้น มีเหรียญสิบบาท 11 เหรียญและเหรียญห้าบาท 14 เหรียญ

ตัวอย่างที่ 3

ลวดหนามขดหนึ่งยาว 84 เมตร นำไปล้อมรั้วรอบที่ดินรูปสี่เหลี่ยมผืนผ้า ที่มีด้านกว้างสั้นกว่าด้านยาว 6 เมตร
จงหาพื้นที่ของที่ดินแปลงนี้

วิธีทำ      ให้ด้านกว้างเท่ากับ x เมตร และด้านยาวเท่ากับ  y  เมตร

โจทย์กำหนดให้ด้านกว้างสั้นกว่าด้านยาว 6 เมตร

                    y – x = 6         —————(1)

และโจทย์กำหนดความยาวรอบสนามเท่ากับความยาวของลวดหนาม

2(x + y) = 84

x + y = 42       —————(2)

(1) + (2);                 2y = 48

    y = 48 ÷ 2

                                   y = 24

แทนค่า y = 24 ในสมการ (2) จะได้    x + 24 = 42

        x  = 42 – 24    

                                                                        x = 18

จะได้ พื้นที่สี่เหลี่ยมผืนผ้า = กว้าง × ยาว  =  xy   = 18 × 24 = 432 ตารางเมตร

ดังนั้น พื้นที่ที่ดินแปลงนี้ เท่ากับ  432 ตารางเมตร

ตัวอย่างที่ 4

มีจำนวนสองจำนวน จำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6 แต่สองเท่าของจำนวนมากมากกว่า
จำนวนน้อยอยู่ 30 จงหาจำนวนทั้งสองนั้น

วิธีทำ  ให้จำนวนมากเป็น  x  และจำนวนน้อยเป็น  y

โจทย์กำหนดจำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6

              x – 2y = 6            ————(1)

และโจทย์กำหนดสองเท่าของจำนวนมากมากกว่าจำนวนน้อยอยู่ 30

              2x – y = 30          ————(2)

(2) × 2 ;                  4x – 2y = 60          ————(3)

(3) – (1);                         3x = 54

x = 54 ÷ 3

x = 18

แทนค่า x = 18 ในสมการ (1) จะได้  18 – 2y = 6

                2y = 18 – 6

                                                                    2y = 12

                            y = 12 ÷ 2  

                                                                     y = 6

ดังนั้น จำนวนทั้งสองคือ 18 และ 6

ตัวอย่างที่ 5

มีผู้เข้าชมคอนเสิร์ต ที่ซื้อบัตรผ่านประตูจำนวน 610 คน เก็บเงินค่าผ่านประตูสองราคา คือ 100 บาท และ 50 บาท ปรากฏว่าเก็บเงินได้ 45,200 บาท ดังนั้น ขายบัตรราคา 100 บาท และ 50 บาท ไปได้อย่างละกี่ใบ

วิธีทำ  ให้ขายบัตรใบละ 100 บาท ได้ x ใบ และขายบัตรใบละ 50 บาท ได้ y ใบ

  มีผู้เข้าชมการแข่งขันฟุตบอลที่เสียเงินจำนวน 610 คน

  จะได้สมการ             x + y   =    610      ———-(1)

จะขายบัตรใบละ 100 บาท ได้เงิน 100x บาท

ขายบัตรใบละ 50 บาท ได้เงิน 50y บาท

จะขายบัตรได้เงิน 45,200 บาท

ดังนั้นจะได้สมการ  100x + 50y  =    45,200   ———-(2)

นำสมการ (1) คูณด้วย 50 จะได้

                                   50x + 50y    =    30,500  ———-(3)                       

นำสมการ (2) ลบด้วย สมการ (3) จะได้

                                    50x     =    14,700

                    x     =    14,700 ÷ 50

                                         x     =    294

แทนค่า x ด้วย 294 ใน (1) จะได้   294 + y    =  610

                                                                               y   =  610 – 294

y   =   316

ตอบ  ขายบัตรใบละ 100 บาท ได้ 294 ใบ และขายบัตรใบละ 50 บาท ได้ 316 ใบ

วิดีโอ การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มารยาทในการพูด

มารยาทในการพูดที่ดีมีอะไรบ้างที่เราควรรู้

บทนำ   สวัสดีน้อง ๆ ทุกคน กลับเข้ามาสู่เนื้อหาสาระดี ๆ อีกครั้ง โดยวันนี้จะเป็นเนื้อหาที่เกี่ยวกับมารยาทในการพูด และจะต่อจากเนื้อหาเมื่อครั้งที่แล้วอย่างเรื่องมารยาทในการฟัง ซึ่งถือเป็นบทเรียนที่มีประโยชน์มาก ๆ เมื่อเราต้องไปพูดต่อหน้าที่สาธารณะ หรือพูดคุยสนทนากับเพื่อน ๆ คุณครู พ่อแม่ของเรา เพื่อให้การสื่อสารมีประสิทธิภาพ เราก็ควรเรียนรู้มารยาทที่ดีในการพูดไปด้วย ถ้าน้อง ๆ ทุกคนพร้อมแล้วมาดูกันว่าวันนี้จะมีเนื้อหาอะไรมาฝากกันบ้าง     การพูด

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง คือ การนำเสนอข้อมูลที่ได้มีการเก็บรวบรวมข้อมูลไว้โดยใช้รูปสี่เหลี่ยมมุมฉาก ซึ่งเเต่ละรูปมีความกว้างเท่ากัน เเละใช้ความสูงหรือความยาวเเสดงปริมาณของข้อมูล เเต่จุดเริ่มต้นจะต้องเริ่มในระดับเดียวกันเสมอ อาจอยู่ในเเนวตั้งหรือเเนวนอนก็ได้ การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่งเปรียบเทียบ คือ การนำเสนอข้อมูลโดยเปรียบเทียบข้อมูลตั้งเเต่ 2 ชุดขึ้นไปในแผนภูมิเดียวกัน โดยมีเเท่งสี่เหลี่ยมที่เเสดงข้อมูลชนิดเดียวกันอยู่ด้วยกันเป็นชุดๆ เเละมีสีหรือเเรเงาในเเท่งสี่เหลี่ยมต่างกัน เเละระบุไว้บนเเผนภูมิด้วยว่าสีหรือเเรเงานั้น ๆ เป็นข้อมูลของอะไร ตัวอย่างของแผนภูมิเเท่งเปรียบเทียบ ส่วนประกอบของเเผนภูมิแท่ง: 1. ชื่อแผนภูมิ 2. จำนวน 3.

Phrasal verb with2 and 3

Two – and Three-Word Phrasal Verbs

สวัสดีค่ะนักเรียนชั้นม.4 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Two – and Three-Word Phrasal verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ทบทวน Phrasal verbs    Phrasal verb คือ กริยาวลี  มีที่มาคือ เป็นการใช้กริยาร่วมกันกับคำบุพบท แล้วทำให้ภาษาพูดดูเป็นธรรมชาติมากขึ้น  เรามักไม่ค่อยเจอคำลักษณะนี้ในภาษาอังกฤษที่เป็นทางการ  ซึ่งในบทเรียนนี้เราจะไปดูตัวอย่างการใช้  กริยาวลีที่มี 2

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

นิทานเวตาล เรื่องเล่าที่สอดแทรกคติธรรมไว้มากมาย

นิทานเวตาล เป็นวรรณคดีอินเดียโบราณที่มีประวัติความเป็นมายาวนานนับพันปี มีเนื้อหาที่บันเทิงแต่ก็สอดแทรกปริศนาธรรมและคติธรรมคำสอนไว้เพื่อเป็นเครื่องกล่อมเกลาจิตใจมนุษย์ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อจากวรรณคดีเรื่องนี้กันค่ะว่าจะมีความน่าสนใจอย่างไรบ้าง ถ้าพร้อมแล้ว ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของนิทานเวตาล     นิทานเวตาล หรือ เวตาลปัญจวิงศติ เป็นวรรณกรรมอินเดียโบราณ กวีคนแรกที่เป็นคนแต่งคือ ศิวทาส เมื่อ 2.500 ปี ต่อมาโสมเทวะ กวีชาวแคว้นกัษมีระได้นํามา

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1