การแก้อสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐

หลักการแก้อสมการเชิงเส้นตัวแปรเดียว

ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้

  1. จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ)
  2. ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้
    • มากกว่า (>) เปลี่ยนเป็น น้อยกว่า (<)
    • น้อยกว่า (<) เปลี่ยนเป็น มากกว่า (>)
    • มากกว่าหรือเท่ากับ (≥) เปลี่ยนเป็น น้อยกว่าหรือเท่ากับ (≤)
    • น้อยกว่าหรือเท่ากับ (≤) เปลี่ยนเป็น มากกว่าหรือเท่ากับ (≥)
    • ไม่ท่ากับ (≠) สัญลักษณ์ไม่เปลี่ยน

จากหลักการแก้อสมการเชิงเส้นตัวแปรเดียว ที่ระบุว่า เมื่อนำจำนวนลบมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้ามนั้น น้องๆมาสังเกตดูว่า ถ้านำจำนวนบวกมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนมั้ย??

จงเติมคำตอบว่าอสมการเป็นจริงหรือเท็จ เมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก

ข้อ อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ

อสมการเป็นจริง

หรือเท็จ

1

3 < 8

เป็นจริง

3 x 4 < 8 x 4

12 < 32

เป็นจริง
2 –4 ≤ –2

เป็นจริง

(–4) x 4  ≤ (–2) x 4

–16  ≤  –8

เป็นจริง

 

3

–5 < 1 เป็นจริง (–5) x 3 < 1 x 3

–15 < 3

เป็นจริง

 

4

4  ≥  3

เป็นจริง

4 x 5  ≥   3 x 5

20  ≥   15

เป็นจริง

5 3 > –1 เป็นจริง 3 x 12 > (–1) x 12

36 > –12

เป็นจริง

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก อสมการเป็นจริงทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงบวก สัญลักษณ์ของอสมการจะไม่เปลี่ยน

ถ้าคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนหรือไม่

ข้อ

อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ อสมการเป็นจริง

หรือเท็จ

  6

3 < 5 เป็นจริง 3 x (–4) < 5 x (–4)

–12 < –20

เท็จ
  7 –4  ≤ –3

เป็นจริง

–4 x (–4)  ≤  –3 x (–4)

16  ≤  12

เท็จ

  8

–5 < 2 เป็นจริง –5 x (–3) < 2 x (–3)

15 < –6

เท็จ
  9 4  ≥  1 เป็นจริง 4 x (–5)  ≥  1 x (–5)

–20  ≥  –5

เท็จ

10 3 > –1 เป็นจริง 3 x (–12)  > –1 x (–12)

 –36 > 12

เท็จ

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ อสมการเป็นเท็จทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม เพื่อทำให้อสมการเป็นจริง ซึ่งเป็นจริงตามหลักการข้อที่ 2

วิธีแก้อสมการเชิงเส้นตัวแปรเดียว

ลำดับต่อไป มาเรียนรู้วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว จากตัวอย่างต่อไปนี้

ตัวอย่างที่ 1  จงหาคำตอบของอสมการ  3x – 2 < 10

จาก   3x – 2 < 10

นำ 2 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   3x – 2 + 2 < 10 + 2

                      3x < 12

                 3x(¹⁄₃ ) < 12(¹⁄₃ )

                             x < 4

ดังนั้น คำตอบของอสมการ 3x – 2 < 10 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 4

ตัวอย่างที่ 2  จงหาคำตอบของสมการ   –4x + 10  ≤  30

วิธีทำ  จาก  –4x + 10  ≤  30

นำ –10 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   –4x + 10  + (–10)  ≤  30 + (–10)

                                       –4x  ≤  20

                              –4x(–¹⁄₄ )  ≥  20(–¹⁄₄)

                                         x   ≥  –5

ดังนั้น คำตอบของอสมการ –4x + 10  ≤  30 คือ จำนวนจริงทุกจำนวนที่มากกว่าหรือเท่ากับ –5

ตัวอย่างที่ 3  จงหาคำตอบของสมการ  2(x – 10) < 4

วิธีทำ  จาก 2(x – 10) < 4

นำ 2 คูณเข้าไปในวงเล็บ

 จะได้   2x – 20  < 4

           2x < 4 + 20 

                           2x < 24 

นำ ¹⁄ ₂ คูณทั้งสองข้างของอสมการ

                 2x (¹⁄ ₂ )  < 24 (¹⁄ ₂)

                            x  <  12

ดังนั้น คำตอบของอสมการ 2(x – 10) < 4 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 12

ตัวอย่างที่ 4  จงหาคำตอบของสมการ  28 – 4x > 20

วิธีทำ  จาก   28 – 4x > 20

นำ –28 บวกเข้าทั้งสองข้างของอสมการ

 จะได้  28 – 4x – 28 > 20 – 28

                                –4x > –8

นำ –¹⁄₄   คูณทั้งสองข้างของอสมการ

                              –4x (–¹⁄₄ )  < -8 (–¹⁄₄)

                                           x  <  2

ดังนั้น คำตอบของอสมการ 28 – 4x > 20 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 2

ตัวอย่างที่ 5  จงหาคำตอบของสมการ  x – 5  ≥  2x – 7

วิธีทำ  จาก  x – 5  ≥  2x – 7

นำ 7 บวกเข้าทั้งสองข้างของอสมการ

 จะได้ x – 5 + 7  ≥  2x – 7 + 7

                                    x + 2  ≥  2x

นำ x ลบทั้งสองข้างของอสมการ

                            x + 2 – x  ≥  2x – x

                                       2  ≥ x  หรือ  x  ≤  2  

ดังนั้น คำตอบของอสมการ x – 5  ≥  2x – 7 คือ จำนวนจริงทุกจำนวนที่น้อยกว่าหรือเท่ากับ 2

ตัวอย่างที่ 6  จงหาคำตอบของสมการ 3(x – 7) ≠ 12

วิธีทำ  จาก  3(x – 7) ≠ 12

จะได้    3x – 21 12

นำ 21 บวกทั้งสองข้างของสมการ

 จะได้ 3x – 21 + 21 ≠ 12 + 21

                                3x ≠ 33

                                  x 11

ดังนั้น คำตอบของอสมการ 3(x –7) 12 คือ จำนวนจริงทุกจำนวนยกเว้น 11

ตัวอย่างที่ 7  จงหาคำตอบของสมการ x – 12 ≠ 2x – 4

วิธีทำ  จาก x – 12 ≠ 2x – 4

นำ 4 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   x – 12 + 4 ≠ 2x – 4 + 4

                          x – 8  ≠  2x

นำ x ลบทั้งสองข้างของอสมการ

                    x – 8 – x  ≠ 2x – x

                               x  ≠   -8

ดังนั้น คำตอบของอสมการ x – 12 ≠ 2x – 4 คือ จำนวนจริงทุกจำนวนยกเว้น -8

แบบฝึกหัด พร้อมเฉลย

จงแสดงวิธีแก้อสมการต่อไปนี้

1) 5x – 10 ≠ 30
วิธีทำ  จาก  5x – 10 ≠ 30
5x – 10 + 10 ≠ 30 + 10
5x ≠ 40
5x (¹⁄ ₅ ) ≠ 40 (¹⁄ ₅ )
x ≠ 8
2) 2x – 17 -11
วิธีทำ  จาก  2x – 17  -11
2x – 17 + 17
 -11+17
2x
 6
                          x  3
3) 3x + 15 < 30
วิธีทำ  จาก  3x + 15 < 30
3x + 15 – 15 <
 30 – 15
3x <
 15
                          x < 5
4) 10x + 5 ≥ 25
วิธีทำ  จาก  10x +5 ≥ 25
10x + 5 – 5 ≥
 25 – 5
10x ≥
 20
                        x ≥ 2
5) 4x + 10 > 50
วิธีทำ  จาก  4x + 10 > 50
4x + 10 – 10 >
 50 – 10
4x >
 40
                          x > 10
6) 7x – 3 ≠ 4
วิธีทำ  จาก  7x – 3 ≠ 4
7x – 3 + 3 ≠ 4 + 3
7x ≠ 7
x ≠ 1
7) 3(x + 1) ≥ 15
วิธีทำ  จาก 3(x + 1) ≥ 15
                   x + 1 ≥ 5
              x + 1 – 1 ≥ 5 – 1
                        x ≥ 4
8) 2(x – 4) < 12
วิธีทำ  จาก  2(x – 4) < 12
                     x – 4 < 6
               x – 4 + 4 < 6 + 4
                          x < 10

เมื่อน้องๆเรียนรู้เรื่องการเแก้อสมการเชิงเส้นตัวแปรเดียว  จะทำให้น้องๆสามารถแก้อสมการได้อย่างถูกต้องและแม่นยำ สามารถนำความรู้ที่ได้จากการเรียนเรื่องสมการมาประยุกต์ใช้กับอสมการได้ เมื่อน้องๆ หาคำตอบได้แล้ว น้องๆจะต้องเขียนกราฟของคำตอบของสมการ ซึ่งเขียนในรูปของเส้นจำนวน อยู่ในบทความเรื่องกราฟของอสมการเชิงเส้นตัวแปรเดียว

วิดีโอ การแก้อสมการเชิงเส้นตัวแปรเดียว

        คลิปวิดีโอนี้ได้รวบรวม วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ม3 เน้นรูปอดีตโดยใช้ Did_ Was_Were_

Short question เน้นรูปอดีตโดยใช้ Did, Was, Were

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “Short question เน้นรูปอดีตโดยใช้ Did, Was, Were” ไปลุยกันโลดเด้อ   ทำไมต้องเรียนเรื่อง Did, Was, Were Did, Was, Were ใช้ถามคำถามใน Past Simple Tense กับเหตุการณ์ที่เกิดขึ้นและจบลงไปแล้วในอดีต หรือ ถามเพื่อให้แน่ใจว่าได้ทำสิ่งนั้นๆไปแล้ว

Adjective

คำคุณศัพท์และการเรียงคำคุณศัพท์

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับคำคุณศัพท์และการเรียงคำคุณศัพท์ในภาษาอังกฤษกัน ถ้าพร้อมแล้วไปลุยกันเลยครับ

ช่วงของจำนวนจริง

ช่วงของจำนวนจริง ช่วงของจำนวนจริง เอาไว้บอกขอบเขตของตัวแปรตัวแปรหนึ่ง เช่น x เป็นตัวแปรที่ไม่ทราบค่า a, b เป็นค่าคงที่ใดๆ a < x < b หมายความว่า ค่าของ x อยู่ระหว่าง a ถึง b เป็นต้น ช่วงของจำนวนจริง ประกอบไปด้วย ช่วงเปิดและช่วงปิด

โคลงภาพพระราชพงศาวดาร ประเมินคุณค่าและสรุปความรู้

โคลงภาพพระราชพงศาวดาร   โคลงภาพพระราชพงศาวดาร เป็นวรรณคดีที่มีเนื้อหาเกี่ยวโยงกับประวัติศาสตร์ จากบทเรียนครั้งก่อนที่เราได้ศึกษาที่มาและเนื้อเรื่องอย่างคร่าว ๆ กันไปแล้ว บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ย้อนอดีตกลับไปอีกครั้งเพื่อศึกษาคุณค่าด้านต่าง ๆ ในโคลงภาพพระราชพงศาวดาร ไปเรียนรู้คุณค่าของวรรณคดีเรื่องนี้พร้อม ๆ กันเลยค่ะ   โคลงภาพพระราชพงศาวดาร ตอน พระสุริโยทัยขาดคอช้าง     คุณค่าด้านเนื้อหา เนื้อหาในตอนพระสุริโยทัยขาดคอช้าง กล่าวถึงตอนที่พระสุริโยทัยแต่งตัวเป็นชายแล้วออกไปรบกับกองทัพของพระเจ้าบุเรนอง และตัดสินใจเข้าไปช่วยพระมหาจักรพรรดิหรือพระสวามีในตอนที่กำลังเสียทีให้กับพระเจ้าแปรจนสิ้นพระชนม์คาคอช้าง

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1