การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.5 M6 Gerund

Gerund

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า  

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน + การใช้ Can/ Could/ Should

สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่เจอบ่อยและการใช้ Can, Could, Should กันนะคะ ไปลุยกันเลย   มารู้จักกับประโยคคำสั่ง (Imperative sentence)     รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence Imperative sentence ในรูปแบบประโยคบอกเล่าจะ

ราชาศัพท์

ราชาศัพท์ คำใดบ้างที่เราควรรู้?

น้อง ๆ หลายคนคงจะเคยได้ยินคำราชาศัพท์มาบ้างเวลาที่เปิดโทรทัศน์ดูข่าวช่วงหัวค่ำ แต่เคยสงสัยกันบ้างไหมคะว่า ราชาศัพท์ ที่นักข่าวในโทรทัศน์พูดกันบ่อย ๆ มีความหมายว่าอะไรบ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เกี่ยวกับคำราชาศัพท์ เพื่อที่เวลาน้อง ๆ ฟังข่าว จะได้เข้าใจได้ง่ายมากขึ้น เราไปเรียนรู้พร้อมกันเลยค่ะ   ราชาศัพท์     การแบ่งลำดับขั้นของบุคคลในการใช้คำราชาศัพท์ แบ่งออกได้เป็น 5 ระดับ ดังนี้

ม3 เน้นรูปอดีตโดยใช้ Did_ Was_Were_

Short question เน้นรูปอดีตโดยใช้ Did, Was, Were

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “Short question เน้นรูปอดีตโดยใช้ Did, Was, Were” ไปลุยกันโลดเด้อ   ทำไมต้องเรียนเรื่อง Did, Was, Were Did, Was, Were ใช้ถามคำถามใน Past Simple Tense กับเหตุการณ์ที่เกิดขึ้นและจบลงไปแล้วในอดีต หรือ ถามเพื่อให้แน่ใจว่าได้ทำสิ่งนั้นๆไปแล้ว

เรียนรู้คุณค่าและนำสุภาษิตสอนหญิงไปใช้ในชีวิตประจำวัน

สุภาษิตสอนหญิง เป็นผลงานที่สุนทรภู่มุ่งสอนและเตือนสติผู้หญิงไทยให้มีกิริยามารยาทและการดำเนินชีวิตตามแบบแผนของสังคมไทยทั้งการพูด การเดิน การคบเพื่อน การวางตัว และความกตัญญู ซึ่งเป็นค่านิยมของคนในอดีตที่ยังคงสืบสานเจตนารมณ์มาจนถึงปัจจุบัน บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึงคุณค่าและการนำไปประยุกต์ใช้ในชีวิตประจำวันกันค่ะ   ความสำคัญและคำสอนในเรื่อง สุภาษิตสอนหญิง   เป็นวรรณคดีคำสอนที่ช่วยเตือนสติหญิงไทยให้ประพฤติตัวอยู่ในประเพณีอันดีงามของไทยตั้งแต่เริ่มโตเป็นสาวไปจนถึงวัยที่แต่งงานมีครอบครัว ดังนี้   สาววัยแรกรุ่น : ควรวางตัวให้สมฐานะ ทั้งการแต่งกายและกิริยามารยาท     หมายถึง สาวแรกรุ่นเปรียบเหมือนมณี

ม.1 There is_There are ทั้งประโยคบอกเล่า_ คำถาม_ปฏิเสธ

การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้น ม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ตารางแสดงความแตกต่างของ  There is/There are และ  Have/Has นักเรียนลองสังเกตดูความแตกต่างของการใช้ There is/There are กับ Have/has จากตารางด้านล่าง ดูนะคะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1