การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของกาพย์พระไชยสุริยา     กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

Passive Voice ในปัจจุบัน

Passive Voice ในรูปปัจจุบัน

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมาย   Passive Voice (แพ็ซซิฝ ว็อยซ) หมายถึงประโยคที่เน้นกรรม โดยการนำโครงสร้างผู้ถูกกระทำขึ้นต้นประโยค และหากว่าต้องการเน้นผู้กระทำให้เติม  “by + ผู้กระทำ” ท้ายประโยค แต่ว่าเราสามารถละ by ไว้ได้น๊า ในบทนี้เราจะไปดูรูปประโยคในปัจจุบันกันจร้า

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1