การบวกและการลบเอกนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การบวกและการลบเอกนาม

บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5

เอกนาม

เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก

ค่าคงตัว คือ ตัวเลข

ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y

เอกนาม ประกอบด้วย 2 ส่วนคือ

1) ส่วนที่เป็นค่าคงตัว เรียกว่า สัมประสิทธิ์ของเอกนาม                                                                                       

2) ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร โดยมีเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก  เรียกผลบวกของเลขชี้กำลังของตัวแปรทั้งหมดในเอกนามว่า ดีกรีของเอกนาม

ตัวอย่างที่ 1  จงบอกสัมประสิทธิ์และดีกรีของเอกนามต่อนี้

  1. 15x4             สัมประสิทธิ์คือ 15         ดีกรีของเอกนามคือ 4
  2. – 5                สัมประสิทธิ์คือ -5         ดีกรีของเอกนามคือ 0
  3. x3y2              สัมประสิทธิ์คือ  1          ดีกรีของเอกนามคือ 5
  4. – 6x3y4z       สัมประสิทธิ์คือ -6         ดีกรีของเอกนามคือ 8

จากตังอย่างที่ 1 น้องๆจะเห็นว่าสัมประสิทธ์ของเอกนามจะเป็นตัวเลขที่อยู่หน้าตัวแปรนั่นเองค่ะ ถ้าโจทย์ไม่เขียนตัวแปร แสดงว่า เลขชี้กำลังของตัวแปรเป็น 0 ทำให้ดีกรีของเอกนามคือ 0 เช่น -5 เขียนได้อีกแบบคือ – 5x0

ตัวอย่างที่ 2  จงพิจารณานิพจน์ต่อไปนี้ว่าเป็นเอกนามหรือไม่ เพราะเหตุใด

  1. – 8x-2 ไม่เป็นเอกนาม เพราะตัวแปร x มีเลขชี้กำลังเป็น -2  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  2. \frac{5a^{2}}{b} ไม่เป็นเอกนาม  เพราะเมื่อเขียน \frac{5a^{2}}{b} ในรูปการคูณจะได้ 5a2b-1 ทำให้ b มีเลขชี้กำลังเป็น  -1  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  3. 4x + 9 ไม่เป็นเอกนาม  เพราะไม่สามารถเขียนนิพจน์นี้ให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรได้

             เอกนามที่จะนำมาบวกหรือลบกันได้นั้นจะต้องเป็นเอกนามที่คล้ายกัน ฉะนั้นก่อนที่จะทำการบวกหรือลบเอกนามต้องตรวจสอบก่อนว่าเป็นเอกนามที่คล้ายกันหรือไม่

ตัวอย่างที่ 3  จงบอกว่าเอกนามที่กำหนดให้แต่ละคู่คล้ายกันหรือไม่

  1. x2y3 กับ – 5x2y3
  2. 3x2 กับ x2
  3. 6 กับ 12p
  4. xy กับ x2y
  5. 4abc0 กับ 9ab
  6. 6x3 กับ 6x

                               คล้ายกัน                                         ไม่คล้ายกัน

                               3x2 กับ x2                                         6x3 กับ 6x

                               x2y3 กับ – 5x2y3                               xy กับ x2y

                               4abc0 กับ 9ab                                 6 กับ 12p

เอกนามสองเอกนามจะคล้ายกัน ก็ต่อเมื่อ

  1. เอกนามทั้งสองมีตัวแปรชุดเดียวกัน
  2. เลขชี้กำลังของตัวแปรตัวเดียวกันในแต่ละเอกนามเท่ากัน

การบวกเอกนาม

เอกนาม 2 เอกนามจะบวกกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน การบวกเอกนามจะใช้สมบัติการแจกแจง  โดยนำสัมประสิทธิ์ของเอกนามมาบวกกัน และมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลบวกของเอกนามที่คล้ายกัน                                                                                                                                                  = (ผลบวกของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 4  จงหาผลบวกของเอกนามต่อไปนี้

  1. 7x + 6x
  2. – 6mn + 4mn – 6
  3. 7xy2 + 5x2y
  1. 7x + 6x

   วิธีทำ  7x + 6x = (7 + 6)(x)

       =13x

              ตอบ  13x

  1. – 6mn + 4mn – 6

             วิธีทำ – 6mn + 4mn = (- 6 + 4)(mn)

                                                 = – 2mn

               ตอบ – 2mn

  1. 7xy2 + 5x2y

             วิธีทำ 7xy2 + 5x2y = 7xy2+ 5x2y

             ตอบ 7xy2 + 5x2y

             สำหรับเอกนามที่ไม่คล้ายกันนั้น จะนำสัมประสิทธิ์มารวมกันไม่ได้ จึงเขียนให้อยู่ในรูปการบวกของเอกนามเช่นเดิม เหมือนในข้อ 3

การลบเอกนาม

การลบเอกนามว่าเอกนาม 2 เอกนามจะลบกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน  การลบเอกนามจะใช้สมบัติการแจกแจงโดยนำสัมประสิทธิ์ของเอกนามมาลบกันและมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลลบของเอกนามที่คล้ายกัน

= (ผลลบของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 5   จงหาผลลบของเอกนามต่อไปนี้

  1. 8x – 6x

วิธีทำ 8x – 6x = (8 – 6)(x)

   = 2x

ตอบ 2x

  1. 20ab2 – 15ab2

วิธีทำ 20ab2 – 15ab2 = (20-15)( ab2)

     = 5ab2

ตอบ 5ab2

  1. 8xy3 – 6xy2

วิธีทำ 8xy3 – 6xy2 = 8xy3 – 6xy2

ตอบ 8xy3 – 6xy2

           สำหรับเอกนามที่ไม่คล้ายกันนั้น  จะนำสัมประสิทธิ์มาลบกันไม่ได้ จึงเขียนให้อยู่ในรูปการลบของเอกนามเช่นเดิมเหมือนในข้อ 3

สรุป

สิ่งที่น้องๆควรรู้ คือเอกนามจะบวกหรือลบกันได้ ก็ต่อเมื่อ เป็นเอกนามที่คล้ายกัน

ผลลบของเอกนามที่คล้ายกัน = (ผลบวกของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ผลลบของเอกนามที่คล้ายกัน = (ผลลบของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ความรู้ในเรื่องการบวกลบเอกนามจะเป็นพื้นฐานในการแยกตัวประกอบของพหุนาม น้องๆสามารถดูคลิปวิดีโอในการแยกตัวประกอบพหุนามได้เลยค่ะ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ศึกษาตัวบทและคุณค่าของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช   หลังจากได้ศึกษาประวัติความเป็นมาและเรื่องย่ออย่างคร่าว ๆ ของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสากันไปแล้ว บทเรียนวันนี้เราจะมาศึกษาเกี่ยวกับตัวบทเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในเรื่องนี้กันค่ะ ไปดูพร้อม ๆ กันเลยนะคะว่าวรรณคดีที่ถูกแปลมาจากพงศาวดารมอญอย่างราชาธิราชเรื่องนี้จะมีตัวบทไหนที่น่าสนใจและให้คุณค่าอะไรบ้าง   ศึกษาตัวบทราชาธิราช ตอน สมิงพระรามอาสา     บทเด่น ๆ บทที่ 1    บทดังกล่าวเกิดขึ้นในตอนที่สมิงพระรามอาสาไปขี่ม้ารำทวนสู้กับกามะนี

ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า พร้อมศึกษาคุณค่าในเรื่อง

  ในบทเรียนก่อนหน้าเราได้เรียนรู้ประวัติความเป็นมา ลักษณะคำประพันธ์และเรื่องย่อกลอนดอกสร้อยรำพึงในป่าช้าไปแล้ว บทเรียนภาษาไทยในวันนี้จะต่อเนื่องกับครั้งก่อนโดยการพาน้อง ๆ ไปเรียนรู้เรื่องตัวบทเด่น ๆ ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า พร้อมทั้งศึกษาคุณค่าที่แฝงอยู่ในเรื่อง ไม่ว่าจะเป็นด้านสังคม เนื้อหา หรือด้านวรรณศิลป์ ถ้าน้อง ๆ พร้อมจะเรียนวรรณคดีเรื่องนี้ต่อไปแล้ว ก็ไปลุยพร้อมกันเลยค่ะ     ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า   สกุลเอ๋ยสกุลสูง ชักจูงจิตชูศักดิ์ศรี อำนาจนำความสง่าอ่าอินทรีย์

หลักการคูณทศนิยม พร้อมตัวอย่างที่เข้าใจง่าย

บทความนี้จะพาน้อง ๆมาทำความเข้าใจกับหลักการคูณทศนิยมในแต่ละรูปแบบ พร้อมทั้งอธิบายหลักการและยกตัวอย่างวิธีคิดในแต่ละรูปแบบของการคูณทศนิยม ให้น้อง ๆสามารถนำไปปรับใช้กับการหาคำตอบจากแบบฝึกหัดในห้องเรียนได้จริง

NokAcademy_ ม.4Gerund

Gerund

  สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund   อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1