สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-มุม-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 2ด้าน และ มุม 1มุม ในการพิสูจน์

ความเท่ากันทุกประการของรูปสามเหลี่ยม

บทนิยาม รูปสามเหลี่ยม ABC คือรูปที่ประกอบด้วยส่วนของเส้นตรงสามเส้น AB, BC และ AC เชื่อมต่อจุด A, B และ C ที่ไม่อยู่บนเส้นตรงเดียวกัน เรียกจุด A, B และ C ว่า “จุดยอดมุมรูปสามเหลี่ยม ABC”

สามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมเท่ากันทุกประการ

  1. AB = DE, AC = DF และ BC = EF
  2. <A = <D, <B = <E และ <C = <F

ลักษณะดังนี้คือ ด้านที่ยาวเท่ากัน มุมที่มีขนาดเท่ากัน หรือจุดที่ทับกันได้ เรียกว่า “สมนัยกัน”

ดังนั้น จะได้ว่ารูปสามเหลี่ยมสองรูปเท่ากันทุกประการเมื่อด้านและมุมของรูปสามเหลี่ยมมีขนาดเท่ากันเป็นคู่ๆ

ในทางกลับกัน เมื่อรูปสามเหลี่ยม ABC และรูปสามเหลี่ยม DEF มีด้านคู่ที่สมนัยกันยาวเท่ากันคือ AB = DE,
BC = EF และ CA = FD และมุมที่สมนัยกันมีขนาดเท่ากันคือ <A = <D, <B = <E และ <C= <F ดังรูป

สามเหลียมที่เท่ากัน

สรุปได้ว่า รูปสามเหลี่ยมสองรูปเท่ากันทุกประการก็ต่อเมื่อด้านคู่ที่สมนัยกันและมุมคู่ที่สมนัยกันของรูปสามเหลี่ยมทั้งสองรูปนั้นมีขนาดเท่ากันเป็นคู่ ๆ

จากรูปจะได้ว่า   AB สมนัยกับ XY

AC สมนัยกับ XY

BC สมนัยกับ YZ

<A สมนัยกับ <X

<B สมนัยกับ <Y

<C สมนัยกับ <Z

จากรูปจะได้ว่า   MN = PQ

MO = PR

ON = QR

<M = <P

<O = <R

<N = <Q

รูปสามเหลี่ยมที่สัมพันธ์กันแบบด้าน-มุม-ด้าน

ในกรณีที่ต้องการทราบว่าสามเหลี่ยมสองรูปใดเท่ากันทุกประการโดยไม่จำเป็นต้องยกมาทับกัน เราสามารถใช้หลักการทางเรขาคณิตในการพิสูจน์ โดยอาศัยค้านกับมุมที่เท่ากันสามคู่ทั้งนี้ต้องขึ้นอยู่กับกรณีที่เป็นไปได้และถือเป็นสัจพจน์ ดังต่อไปนี้

ถ้ารูปสามเหลี่ยมสองรูปใด ๆ มีด้านยาวเท่ากันสองคู่และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากันแล้ว ผลที่ตามมาคือ ด้านที่สมนัยที่เหลืออีก 1 คู่จะยาวเท่ากัน และมุมที่สมนัยกันที่เหลืออีก 2 คู่จะมีขนาดเท่ากันเป็นคู่ ๆ

สรุปได้ว่า

ถ้ารูปสามเหลี่ยมสองรูปมีความสัมพันธ์กันแบบด้าน-มุม-ด้าน (ด.ม.ด. ) กล่าวคือ มีด้านยาวเท่ากันสองคู่ และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากัน แล้วรูปสามเหลี่ยมสองรูปนั้นเท่ากันทุกประการ

พิสูจน์   เนื่องจาก            1) ด้าน BO = ด้าน OC (กำหนดให้)

2) มุม AOB =มุม AOC (ต่างเท่ากับ 90องศา)
3) ด้าน AO = ด้าน OA (เป็นด้านร่วม)

ดังนั้น สามเหลี่ยมABO เท่ากันทุกประการกับสามเหลี่ยมACO  (ด.ม.ด.)

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเขียนเรียงความ

เทคนิคการเขียนเรียงความง่าย ๆ ที่จะช่วยถ่ายทอดความคิดให้เป็นขั้นตอน

การเขียนเรียงความ เป็นทักษะการเขียนที่มีสำคัญมาก เพราะเป็นการถ่ายทอดความคิดให้ออกมาอยู่ในรูปของตัวอักษร จะมีวิธีเขียนอย่างไรบ้างนั้น บทเรียนในวันนี้จะทำให้น้อง ๆ มีความรู้ความเข้าใจถึงวิธีการเขียนเรียงมากขึ้น จะเป็นอย่างไรนั้น ไปเรียนรู้พร้อมกันเลยค่ะ     เรียงความ เป็นทักษะการเขียนที่แสดงออกถึงความรู้สึกนึกคิด ความเห็น ความเข้าใจของผู้เขียน มีรูปแบบและวิธีการเขียนที่มีแบบแผน เพื่อถ่ายทอดความคิดออกมาเป็นตัวอักษรให้น่าอ่าน และยังเป็นพื้นฐานของการเขียนต่าง ๆ ไม่ว่าจะเป็นบทความหรือนวนิยายอีกด้วย โดยประเภทของการเขียนเรียงความมีดังนี้ 1. เรื่องที่เขียนเพื่อความรู้ 2. เรื่องที่เขียนเพื่อความเข้าใจ

NokAcademy_ม3 มารู้จักกับ Signal Words

การใช้ Signal words : First, Second, Firstly, Secondly, Finally, Then, Next etc.

มารู้จักกับ Signal Words หรือ อีกชื่อที่รู้จักกันคือ Connective Words: คำเชื่อมประโยค/วลี ในภาษาอังกฤษ สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing)

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

Relative Clause Profile II

Relative Clause

สวัสดีค่ะนักเรียนม. 3 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อ   Relative

โคลงโสฬสไตรยางค์

โคลงโสฬสไตรยางค์ โคลงสุภาษิตผลงานพระราชนิพนธ์ในร.5

  โคลงโสฬสไตรยางค์ เป็นโคลงสุภาษิต ผลงานพระราชนิพนธ์ของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคดีที่เปี่ยมไปด้วยคุณค่าและข้อคิดสอนใจมากมาย ถ้าอยากรู้แล้วว่ามีเนื้อหาอะไรและมีข้อคิดอย่างไรบ้าง เราก็ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     โคลงโสฬสไตรยางค์ (พ.ศ. 2423) เป็นโคลงสุภาษิต บทพระราชนิพนธ์ในพระบาทสมเด็จเพราะจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 เดิมเป็นภาษาอังกฤษ จึงได้ทรงพระกรุณาโปรดเกล้าโปรดกระหม่อมให้กวีในพระราชสำนักแปลและประพันธ์โคลงเป็นภาษาไทย โดยพระองค์ได้ทรงตรวจแก้และทรงพระราชนิพนธ์โคลงบทนำด้วย

ศึกษาประวัติความเป็นมาและเรื่องย่อของเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช เป็นวรรณคดีประเภท พงศาวดาร ที่มีการแปลมาจากพงศาวดารมอญ น้อง ๆ หลายคนคงจะทราบกันดีอยู่แล้วว่าพงศาวดารก็คือเรื่องราวหรือเหตุการณ์ที่เกี่ยวกับประเทศชาติหรือพระมหากษัตริย์ แต่ทราบกันหรือไม่คะว่าทำไมในแบบเรียนภาษาไทยของเรานั้นถึงต้องเรียนเรื่องราชาธิราช ที่เป็นพงศาวดารมอญด้วย วันนี้เราจะพาน้อง ๆ ทุกคนไปเรียนรู้ประวัติความเป็นมาของเรื่องราชาธิราชรวมไปถึงเรื่องย่อ ซึ่งในบทที่เราจะเรียนนี้คือตอน สมิงพระรามอาสา เรื่องราวจะเป็นอย่างไรบ้าง ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ราชาธิราช   ประวัติความเป็นมา     ราชาธิราชเป็นวรรณคดีร้อยแก้วที่พระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราชโปรดเกล้าฯ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1