สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สับเซต หรือ เซตย่อย

การที่เราจะบอกว่า เซต A เป็นสับเซต(subset)ของเซต B ได้นั้น สมาชิก “ทุกตัวของ A” จะต้องเป็นสมาชิกของ B ด้วย เขียนแทนด้วย A ⊂ B 

ตัวอย่างเช่น A = {1,3,5,7} , B = {1,2,3,4,5,6,7,8,9}

เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เป็นสมาชิกของ B ดังนั้น A เป็นสับเซตของ B (A⊂B) แต่ B ไม่เป็นสับเซตของเซต A (B ⊄ A) เพราะ สมาชิกบางตัวของB ไม่อยู่ใน A 

เราอาจจะวาดรูปเพื่อให้เข้าใจมากขึ้น

จากรูป เราจะเห็นได้ชัดเลยว่า สมาชิกทุกตัวของเซต A อยู่ในเซต B แต่สมาชิกบางตัวของเซต B ไม่อยู่ในเซต A

และเรายังสามารถบอกได้อีกว่า Ø, {1}, {3}, {5}, {7} ⊂ A และ Ø, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}⊂ B

**ข้อควรรู้  เซตว่าง(Ø)เป็นสับเซตของทุกเซต**

สับเซตแท้และสับเซตไม่แท้

สับเซตแท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A ไม่เท่ากับจำนวนสมาชิกของ B จะได้ว่า A เป็นสับเซตแท้ของเซต B 

สับเซตไม่แท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A เท่ากับจำนวนสมาชิกของ B จะได้ว่า A ไม่เป็นสับเซตแท้ สามารถเขียนแทนด้วย A⊆B

“จำง่ายๆคือ สับเซตไม่แท้ เซตสองเซตจะเท่ากัน (A = B)”

เช่น



เพาเวอร์เซต(Power set)

ให้ A เป็นเซตใดๆ

พาวเวอร์เซต คือ เซตของสับเซตทั้งหมดของA  เพาเวอร์เซตของA เขียนแทนด้วย P(A) อ่านแล้วอาจจะงงๆ เราลองมาดูตัวอย่างเพื่อให้เข้าใจง่ายขึ้น

เช่น

1.) A = {1,2} สับเซตของเซต A ประกอบด้วย Ø, {1}, {2}, {1,2} จะเห็นว่าจำนวนสับเซตของเซต A = 4 = 2²

ดังนั้น เพาเวอร์เซตของเซต A คือ P(A) = {Ø, {1}, {2}, {1,2}}

2.) A = {1,2,3} จะได้ว่า P(B) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} จำนวนสมาชิกของ P(B) = 8 = 2³

เราจะสังเกตเห็นว่า เซต A มีจำนวนสมาชิกเท่ากับ 2  จำนวนสมาชิกของ P(A) = 2²  

เซต B มีจำนวนสมาชิกเท่ากับ 3 จำนวนสมาชิกของ P(B) = 2³ 

ดังนั้น ถ้า A มีจำนวนสมาชิกเท่ากับ a จะได้ว่า P(A) จะมีจำนวนสมาชิกเท่ากับ 2ª

 

ตัวอย่าง

 

1.)

2.)

3.) ให้ A = {x|x เป็นจำนวนเต็ม}

B = {y |0< y< 5 }

C = {z | z เป็นจำนวนเต็มคี่ที่มากกว่า3 แต่ น้อยกว่า9}

จากโจทย์สามารถบอกเกี่ยวกับสับเซตแท้ เพาเวอร์เซตได้อย่างไรบ้าง

วิธีทำ เราจะทำให้มันง่ายขึ้นโดยการวาดภาพ

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Tense and time

การใช้ Tenses ในภาษาอังกฤษ ที่เกี่ยวข้องกับเวลา

สวัสดีค่ะนักเรียนม.  1 ที่น่ารักทุกคนวันนี้ครูจะพาไปรู้จักกับ การใช้ Tense ต่าง ๆ ในภาษาอังกฤษกัน ก่อนอื่นมารู้จักTenses กันก่อน Tenses อ่านว่า เท้นสฺ ถ้าเป็นคำ Adjective หรือคุณศัพท์จะแปลว่าหนักหนาสาหัส แต่ถ้าเป็นคำนาม (Noun) จะแปลว่า กาลเวลาค่ะ หัวใจของการเรียนเรื่อง Tense คือ กริยา(verb) เมื่อกริยาเปลี่ยนไปเวลาและเงื่อนไขการใช้งานของ

โคลนติดล้อ บทความปลุกใจในรัชกาลที่ 6

เป็นที่รู้กันดีกว่าพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ของเรานั้น ทรงโปรดงานด้านวรรณกรรมมาตั้งแต่ยังเยาว์ และเริ่มงานวรรณกรรมตั้งแต่ยังทรงศึกษาอยู่ที่ประเทศอังกฤษ ทำให้มีผลงานในพระราชนิพนธ์มากมายหลายเรื่อง และแตกต่างกันออกไป ที่ผ่านมาน้อง ๆ คงจะได้เรียนมาหลายเรื่องแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปรู้จักกับผลงานของพระองค์อีกเรื่องหนึ่ง แตกต่างจากเรื่องก่อน ๆ ที่เคยเรียนมาอย่างแน่นอน เพราะเรากำลังพูดถึงโคลนติดล้อ ผลงานในพระราชนิพนธ์ที่อยู่ในรูปแบบของบทความ จะมีที่มา มีเนื้อหาที่น่าสนใจอย่างไรบ้างนั้น เราไปติดตามกันเลยค่ะ   ที่มาของ โคลนติดล้อ

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

จุด

จุด : เรขาคณิตวิเคราะห์

จุด จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น   ระยะทางระหว่างจุดสองจุด เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร โดยจะกำหนดให้  และ  เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก ตัวอย่าง ระยะห่างระหว่าง A(1,1) และ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1