สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สับเซต หรือ เซตย่อย

การที่เราจะบอกว่า เซต A เป็นสับเซต(subset)ของเซต B ได้นั้น สมาชิก “ทุกตัวของ A” จะต้องเป็นสมาชิกของ B ด้วย เขียนแทนด้วย A ⊂ B 

ตัวอย่างเช่น A = {1,3,5,7} , B = {1,2,3,4,5,6,7,8,9}

เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เป็นสมาชิกของ B ดังนั้น A เป็นสับเซตของ B (A⊂B) แต่ B ไม่เป็นสับเซตของเซต A (B ⊄ A) เพราะ สมาชิกบางตัวของB ไม่อยู่ใน A 

เราอาจจะวาดรูปเพื่อให้เข้าใจมากขึ้น

จากรูป เราจะเห็นได้ชัดเลยว่า สมาชิกทุกตัวของเซต A อยู่ในเซต B แต่สมาชิกบางตัวของเซต B ไม่อยู่ในเซต A

และเรายังสามารถบอกได้อีกว่า Ø, {1}, {3}, {5}, {7} ⊂ A และ Ø, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}⊂ B

**ข้อควรรู้  เซตว่าง(Ø)เป็นสับเซตของทุกเซต**

สับเซตแท้และสับเซตไม่แท้

สับเซตแท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A ไม่เท่ากับจำนวนสมาชิกของ B จะได้ว่า A เป็นสับเซตแท้ของเซต B 

สับเซตไม่แท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A เท่ากับจำนวนสมาชิกของ B จะได้ว่า A ไม่เป็นสับเซตแท้ สามารถเขียนแทนด้วย A⊆B

“จำง่ายๆคือ สับเซตไม่แท้ เซตสองเซตจะเท่ากัน (A = B)”

เช่น



เพาเวอร์เซต(Power set)

ให้ A เป็นเซตใดๆ

พาวเวอร์เซต คือ เซตของสับเซตทั้งหมดของA  เพาเวอร์เซตของA เขียนแทนด้วย P(A) อ่านแล้วอาจจะงงๆ เราลองมาดูตัวอย่างเพื่อให้เข้าใจง่ายขึ้น

เช่น

1.) A = {1,2} สับเซตของเซต A ประกอบด้วย Ø, {1}, {2}, {1,2} จะเห็นว่าจำนวนสับเซตของเซต A = 4 = 2²

ดังนั้น เพาเวอร์เซตของเซต A คือ P(A) = {Ø, {1}, {2}, {1,2}}

2.) A = {1,2,3} จะได้ว่า P(B) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} จำนวนสมาชิกของ P(B) = 8 = 2³

เราจะสังเกตเห็นว่า เซต A มีจำนวนสมาชิกเท่ากับ 2  จำนวนสมาชิกของ P(A) = 2²  

เซต B มีจำนวนสมาชิกเท่ากับ 3 จำนวนสมาชิกของ P(B) = 2³ 

ดังนั้น ถ้า A มีจำนวนสมาชิกเท่ากับ a จะได้ว่า P(A) จะมีจำนวนสมาชิกเท่ากับ 2ª

 

ตัวอย่าง

 

1.)

2.)

3.) ให้ A = {x|x เป็นจำนวนเต็ม}

B = {y |0< y< 5 }

C = {z | z เป็นจำนวนเต็มคี่ที่มากกว่า3 แต่ น้อยกว่า9}

จากโจทย์สามารถบอกเกี่ยวกับสับเซตแท้ เพาเวอร์เซตได้อย่างไรบ้าง

วิธีทำ เราจะทำให้มันง่ายขึ้นโดยการวาดภาพ

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

การใช้พจนานุกรม เรียนรู้วิธีหาคำให้เจอได้อย่างทันใจ

​พจนานุกรม มาจากคำภาษาบาลีว่า วจน (อ่านว่า วะ-จะ-นะ) ภาษาไทยแผลงเป็น พจน์ แปลว่า คำ คำพูด ถ้อยคำ กับคำว่า อนุกรม แปลว่า ลำดับ เมื่อรวมกันแล้วพจนานุกรมจึงหมายถึงหนังสือที่รวบรวมคำโดยจัดเรียงคำตามลำดับตัวอักษร แต่ด้วยความที่คำในภาษาไทยของเรานั้นมีมากมาย ทำให้น้อง ๆ หลายคนอาจจะมีท้อใจบ้างเมื่อเห็นความหนาของเล่มพจนานุกรม ไม่รู้จะหาคำที่ต้องการได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงวิธี การใช้พจนานุกรม

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

แพทยศาสตร์สงเคราะห์ ศึกษาที่มาของมรดกทางวรรณคดีของชาติ

ในยุคสมัยที่การแพทย์ยังไม่เจริญก้าวหน้า ภาวะการเจ็บป่วยของประชาชนมีมากขึ้น แพทยศาสตร์สงเคราะห์ ถูกจัดทำขึ้นเพื่อให้แพทย์และประชาชนสามารถศึกษาเรื่องของโรคภัยได้ด้วยตนเอง เป็นภูมิปัญญาทางการแพทย์และมรดกทางวรรณคดีของชาติที่สำคัญมาก ๆ อีกเรื่องหนึ่ง บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคีเรื่องสำคัญที่ควรค่าแก่การอนุรักษ์ สืบทอดว่ามีที่มาและเนื้อหาอย่างใน คัมภีร์ฉันทศาสตร์ แพทยศาสตร์สงเคราะห์   ความเป็นมา แพทยศาสตร์สงเคราะห์   ตำราแพทยศาสตร์สงเคราะห์ เป็นตำราแพทย์แผนโบราณฉบับหลวง มีที่มาจากพระราชดำริของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 ที่ทรงเห็นว่า บรรดาคัมภีร์แพทย์แผนโบราณและตำรายาพื้นบ้านของไทยนั้นมีความสำคัญ เป็นสมบัติทางวัฒนธรรมที่ควรค่าแก่การรักษาไว้

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1