สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สับเซต หรือ เซตย่อย

การที่เราจะบอกว่า เซต A เป็นสับเซต(subset)ของเซต B ได้นั้น สมาชิก “ทุกตัวของ A” จะต้องเป็นสมาชิกของ B ด้วย เขียนแทนด้วย A ⊂ B 

ตัวอย่างเช่น A = {1,3,5,7} , B = {1,2,3,4,5,6,7,8,9}

เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เป็นสมาชิกของ B ดังนั้น A เป็นสับเซตของ B (A⊂B) แต่ B ไม่เป็นสับเซตของเซต A (B ⊄ A) เพราะ สมาชิกบางตัวของB ไม่อยู่ใน A 

เราอาจจะวาดรูปเพื่อให้เข้าใจมากขึ้น

จากรูป เราจะเห็นได้ชัดเลยว่า สมาชิกทุกตัวของเซต A อยู่ในเซต B แต่สมาชิกบางตัวของเซต B ไม่อยู่ในเซต A

และเรายังสามารถบอกได้อีกว่า Ø, {1}, {3}, {5}, {7} ⊂ A และ Ø, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}⊂ B

**ข้อควรรู้  เซตว่าง(Ø)เป็นสับเซตของทุกเซต**

สับเซตแท้และสับเซตไม่แท้

สับเซตแท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A ไม่เท่ากับจำนวนสมาชิกของ B จะได้ว่า A เป็นสับเซตแท้ของเซต B 

สับเซตไม่แท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A เท่ากับจำนวนสมาชิกของ B จะได้ว่า A ไม่เป็นสับเซตแท้ สามารถเขียนแทนด้วย A⊆B

“จำง่ายๆคือ สับเซตไม่แท้ เซตสองเซตจะเท่ากัน (A = B)”

เช่น



เพาเวอร์เซต(Power set)

ให้ A เป็นเซตใดๆ

พาวเวอร์เซต คือ เซตของสับเซตทั้งหมดของA  เพาเวอร์เซตของA เขียนแทนด้วย P(A) อ่านแล้วอาจจะงงๆ เราลองมาดูตัวอย่างเพื่อให้เข้าใจง่ายขึ้น

เช่น

1.) A = {1,2} สับเซตของเซต A ประกอบด้วย Ø, {1}, {2}, {1,2} จะเห็นว่าจำนวนสับเซตของเซต A = 4 = 2²

ดังนั้น เพาเวอร์เซตของเซต A คือ P(A) = {Ø, {1}, {2}, {1,2}}

2.) A = {1,2,3} จะได้ว่า P(B) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} จำนวนสมาชิกของ P(B) = 8 = 2³

เราจะสังเกตเห็นว่า เซต A มีจำนวนสมาชิกเท่ากับ 2  จำนวนสมาชิกของ P(A) = 2²  

เซต B มีจำนวนสมาชิกเท่ากับ 3 จำนวนสมาชิกของ P(B) = 2³ 

ดังนั้น ถ้า A มีจำนวนสมาชิกเท่ากับ a จะได้ว่า P(A) จะมีจำนวนสมาชิกเท่ากับ 2ª

 

ตัวอย่าง

 

1.)

2.)

3.) ให้ A = {x|x เป็นจำนวนเต็ม}

B = {y |0< y< 5 }

C = {z | z เป็นจำนวนเต็มคี่ที่มากกว่า3 แต่ น้อยกว่า9}

จากโจทย์สามารถบอกเกี่ยวกับสับเซตแท้ เพาเวอร์เซตได้อย่างไรบ้าง

วิธีทำ เราจะทำให้มันง่ายขึ้นโดยการวาดภาพ

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สมบัติของการคูณเลขยกกำลัง  ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว  1)   am x an

นิราศภูเขาทอง ประวัติความเป็นมาของวรรณคดีที่แต่งโดยสุนทรภู่

นิราศภูเขาทอง   เชื่อว่าน้อง ๆ หลายคนคงจะเคยได้ยินเรื่องนิราศภูเขาทองผ่านหูกันมาบ้างไม่มากก็น้อย แต่น้อง ๆ ทราบหรือเปล่าคะว่านิราศภูเขาทองคืออะไร และมีที่มาอย่างไร ก่อนอื่นมาดูความหมายของนิราศกันก่อนนะคะ นิราศ คือวรรณคดีที่แต่งขึ้นเพื่อเล่าถึงการเดินจากที่หนึ่งไปอีกที่หนึ่ง โดยระหว่างการเดินทาง กวีก็จะนำสิ่งต่าง ๆ ที่ได้พบเห็น ไม่ว่าจะเป็นธรรมชาติ วิวทิวทัศน์หรือความเป็นอยู่ของผู้คนมาพรรณนา   หลังจากเข้าใจความหมายของนิราศแล้วก็ไปเริ่มเรียนรู้ประวัติความเป็นมาและเรื่องย่อของนิราศภูเขาทอง หนึ่งในกลอนนิราศที่ได้รับการยกย่องว่าแต่งดีที่สุดของสุนทรภู่กันเลยค่ะ   ประวัติความเป็นมา   สุนทรภู่แต่งนิราศภูเขาทองขึ้นมาในสมัยรัชสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่เจ้าหัว

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

ผู้รู้ดีเป็นผู้เจริญ

ผู้รู้ดีเป็นผู้เจริญ เรียนรู้บทร้อยกรองจากพุทธศาสนสุภาษิต

สุภาษิต หมายถึงถ้อยคำที่กล่าวสืบต่อกันมาช้านาน และมีความหมายเป็นคติสอนใจ บางสุภาษิตพูดนำมาแต่งเป็นบทร้อยกรองเพื่อใช้เป็นบทอาขยานให้กับเด็ก ๆ ได้เรียน ได้ฝึกอ่าน รวมไปถึงให้เรียนรู้ข้อคิดจากสุภาษิตได้ง่ายมากขึ้น บทที่เราจะได้เรียนกันในวันนี้คือ ผู้รู้ดีเป็นผู้เจริญ จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมา ผู้รู้ดีเป็นผู้เจริญ     ผู้รู้ดีเป็นผู้เจริญเป็นบทร้อยกรองที่ถูกประพันธ์ขึ้นโดยพระยาอุปกิตศิลปสาร แต่งด้วยโคลงสี่สุภาพ 1 บท และกาพย์ยานี 11

M2 V. to be + ร่วมกับ Who WhatWhere + -Like + infinitive

การใช้ V. to be ร่วมกับ Who/ What/Where และ Like +V. infinitive

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to be + ร่วมกับ Who/ What/Where + -Like + infinitive ซึ่งเป็นโครงสร้างที่สับสนบ่อย แต่ที่จริงแล้วง่ายมากๆ ไปลุยกันเลยจ้า Let’s go ความหมาย    Verb to be

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1