วงรี

วงรี

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วงรี

วงรี จะประกอบไปด้วย

1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า

2) จุดยอด

3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก

4) ความเยื้องศูนย์กลาง (eccentricity)

วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
จุดยอด : (a, 0) และ (-a, 0)
แกนเอก : แกน X ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (c, 0) และ (-c, 0)
ความเยื้องศูนย์กลาง(eccentricity):  e=\frac{c}{a}

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{y^2}{a^2}+\frac{x^2}{b^2}=1
จุดยอด : (0, a) (0, -a)
แกนเอก : แกน Y ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (0, c) และ (0, -c)
ความเยื้องศูนย์กลาง(eccentricity): e=\frac{c}{a}

***ความเยื้องศูนย์กลางของวงรี คือ อัตราส่วนของ c ต่อ a เมื่อ c=\sqrt{a^2-b^2} ***

วงรี

วงรีที่มีจุดศูนย์กลางที่ (h, k)

วงรี

แกนเอกขนานแกน X

สมการรูปแบบมาตรฐาน:  \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1
จุดยอด : (h + a, k) และ (h – a, k)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h + c, k) และ (h – c, k)

แกนเอกขนานแกน Y

สมการรูปแบบมาตรฐาน : \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1
จุดยอด : (h, k + a) (h, k – a)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h, k + c) และ (h, k – c)

ตัวอย่าง

1. จงหาโฟกัสของวงรีที่มีสมการคือ

วงรี

2. วงรีรูปหนึ่ง มีจุดยอดอยู่ที่ (4,0) และ (-4,0) และโฟกัสอยู่ที่ (3,0) และ (-3,0) จงหาสมการของวงรี

วงรี

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

โคลงสี่สุภาพ เจาะลึกคำประพันธ์ที่กวีนิยมแต่งมากที่สุด

  โคลงสี่สุภาพ เป็นคำประพันธ์ประเภทหนึ่งของบทร้อยกรองที่กวีนิยมนำไปใช้กันมากมาย บทเรียนวันนี้ จะพาน้อง ๆ ไปเรียนรู้เรื่องของโคลงสี่สุภาพ ว่ามีฉันทลักษณ์และลักษณะคำประพันธ์อย่างไร ทำไมถึงได้รับความนิยมในหมู่กวี ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงสี่สุภาพคืออะไร     โคลง เป็นคำประพันธ์ที่มีการเรียบเรียงถ้อยคำเป็นคณะ มีกำหนดเอกโทและสัมผัส ส่วนสุภาพ หรือเสาวภาพ หมายถึงคำที่ไม่มีวรรณยุกต์ โคลงสี่สุภาพปรากฏในวรรณคดีไทยตั้งแต่สมัยอยุธยา โดยโคลงที่มีชื่อเสียงและได้รับการยกย่องว่าแต่งดี ยอดเยี่ยม

Profile-Have has got P.5

ทบทวนการใช้ ” Have/has got “

สวัสดีค่ะนักเรียนป. 5 ที่น่ารักทุกคน วันนี้เราจะไปทบทวนการใช้  Have/has got ในภาษาอังกฤษกันค่ะ ซึ่งก่อนอื่นต้อง มาทำความรู้จักกับ Verb to have กันก่อนซึ่ง เจ้า Verb to have ที่เราอาจจะคุ้นหูบ่อยๆ เช่น  Have a wonderful day. ขอให้มีวันที่ดีนะ เมื่อเราต้องการจบบทสนทนา

สามัคคีเภทคำฉันท์

สามัคคีเภทคำฉันท์ วรรณคดีขนาดสั้นที่ว่าด้วยความสามัคคี

สามัคคีเภทคำฉันท์ เป็นนิทานสุภาษิตขนาดสั้นว่าด้วยเรื่องความสามัคคี เป็นอีกหนึ่งวรรณคดีที่ได้รับการยกย่องว่าแต่งดี ทั้งด้านการประพันธ์และเนื้อหา เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปทำความรู้จักกับวรรณคดีเรื่องดังกล่าวเพื่อศึกษาที่มา จุดประสงค์ รวมไปถึงเรื่องย่อ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ที่มาของเรื่องและจุดประสงค์ในการแต่ง   สามัคคีเภทคำฉันท์ ดำเนินเรื่องโดยอิงประวัติศาสตร์ครั้งพุทธกาล เป็นนิทานสุภาษิตในมหาปรินิพพานสูตรและอรรถกถาสุมังคลวิลาสินี     ในสมัยรัชกาลที่ 6 เกิดวิกฤตการณ์ทั้งภายในและภายนอกประเทศ เช่น เกิดสงครามโลกครั้งที่ 1

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1