วงรี

วงรี

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วงรี

วงรี จะประกอบไปด้วย

1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า

2) จุดยอด

3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก

4) ความเยื้องศูนย์กลาง (eccentricity)

วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
จุดยอด : (a, 0) และ (-a, 0)
แกนเอก : แกน X ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (c, 0) และ (-c, 0)
ความเยื้องศูนย์กลาง(eccentricity):  e=\frac{c}{a}

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{y^2}{a^2}+\frac{x^2}{b^2}=1
จุดยอด : (0, a) (0, -a)
แกนเอก : แกน Y ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (0, c) และ (0, -c)
ความเยื้องศูนย์กลาง(eccentricity): e=\frac{c}{a}

***ความเยื้องศูนย์กลางของวงรี คือ อัตราส่วนของ c ต่อ a เมื่อ c=\sqrt{a^2-b^2} ***

วงรี

วงรีที่มีจุดศูนย์กลางที่ (h, k)

วงรี

แกนเอกขนานแกน X

สมการรูปแบบมาตรฐาน:  \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1
จุดยอด : (h + a, k) และ (h – a, k)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h + c, k) และ (h – c, k)

แกนเอกขนานแกน Y

สมการรูปแบบมาตรฐาน : \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1
จุดยอด : (h, k + a) (h, k – a)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h, k + c) และ (h, k – c)

ตัวอย่าง

1. จงหาโฟกัสของวงรีที่มีสมการคือ

วงรี

2. วงรีรูปหนึ่ง มีจุดยอดอยู่ที่ (4,0) และ (-4,0) และโฟกัสอยู่ที่ (3,0) และ (-3,0) จงหาสมการของวงรี

วงรี

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.4Gerund

Gerund

  สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund   อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

รามเกียรติ์ ตอน นารายณ์ปราบนนทก ศึกษาตัวบทและคุณค่า

หลังได้เรียนรู้ความเป็นมาและเรื่องย่อของบทละครเรื่อง รามเกียรติ์ ตอน นารายณ์ปราบนนทก กันไปแล้ว ในบทนี้ น้อง ๆ จะได้เรียนรู้เพิ่มเติมเกี่ยวกับตัวบทเด่น ๆ ที่น่าสนใจในเรื่อง พร้อมทั้งจะได้ตามไปดูคุณค่าของเรื่องว่ามีอะไรบ้าง ถ้าพร้อมแล้ว ไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ศึกษาตัวบทละครเรื่อง รามเกียรติ์ ตอน นารายณ์ปราบนนทก     เหลือบเห็นสตรีวิไลลักษณ์       พิศพักตร์ผ่องเพียงแขไข

wh- question

Wh- Question ใน Past Simple และ Future Tense

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะเรียนรู้เกี่ยวกับการใช้ Wh- Question ในประโยคที่เป็น Past Simple และ Future Tense จะเป็นอย่างไรลองไปดูกันเลยครับ

เรียนรู้ที่มาของชาติกำเนิดอันยิ่งใหญ่ มหาเวสสันดรชาดก

หลายคนคงจะเคยได้ยินคำว่า มหาชาติชาดก หรือ มหาเวสสันดรชาดก กันมาบ้างแล้วผ่านสื่อต่าง ๆ แต่รู้หรือไม่คะว่าคำ ๆ นี้มีที่จากอะไร คำว่า มหาชาติ เป็นคำเรียก เวสสันดรชาดก ส่วนชาดกนั้นเป็นชื่อคัมภีร์หนึ่งของพุทธศาสนาที่กล่าวถึงอดีตชาติของพระพุทธเจ้า ดังนั้นมหาเวสสันดรชาดก จึงเป็นเรื่องราวที่เกี่ยวกับชาติกำเนิดอันหยิ่งใหญ่ของพระพุทธเจ้า น้อง ๆ คงสงสัยใช่ไหมคะว่าทำไมเวสสันดรชาดกถึงได้ชื่อว่าเป็นชาดกที่ยิ่งใหญ่ที่สุด ถ้าอยากรู้คำตอบแล้วล่ะก็ เราไปเรียนรู้ความเป็นของเรื่องนี้พร้อมกันเลยค่ะ   มหาเวสสันดรชาดก   มหาชาติชาดก

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1