รูปแบบของประพจน์ที่สมมูลกัน

การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ประพจน์ที่สมมูล

ประพจน์ที่สมมูลกัน คือ ประพจน์ที่มีค่าความจริงเหมือนกันทุกกรณี เขียนแทนด้วยสัญลักษณ์ “≡”

แล้วค่าความจริงเหมือนกันทุกกรณี คือยังไง?? เรามาลองพิจารณาค่าความจริงของประพจน์ p→q และ ∼q→∼p จากตารางค่าความจริงกันค่ะ

จากตาราง จะเห็นว่า p→q และ ∼q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้นเราจะได้ว่า p→q และ ∼q→∼p เป็นประพจน์ที่สมมูลกัน เขียนแทนด้วย p→q ≡ ∼q→∼p

หลังจากที่เรารู้แล้วว่าประพจน์ที่สมมูลกันคืออะไร ต่อไปเรามาดูตัวอย่างของประพจน์ที่สมมูลกันค่ะ (ควรจำให้ได้ แล้วจะเป็นประโยชน์มากๆ)

1.) p∧p≡ p

2.) p∨p≡p

3.) (p∨q)∨r ≡ p∨(q∨r) (เปลี่ยนกลุ่ม)

4.) (p∧q)∧r ≡ p∧(q∧r) (เปลี่ยนกลุ่ม)

5.) p∨q ≡ q∨p (สลับที่)

6.) p∧q ≡ p∧q (สลับที่)

7.) p∨(q∧r) ≡ (p∨q)∧(p∨r) (แจกแจง)

8.) p∧(q∨r) ≡ (p∧q)∨(p∧r) (แจกแจง)

9.) ∼(p∨q) ≡ ∼p∧∼q

10.) ∼(p∧q) ≡ ∼p∨∼q

11.) ∼p→q ≡ p∨∼q **

12.) p→q ≡ ∼p∨q **

13.) p→q ≡ ∼q→∼p

14.) p↔q ≡ (p→q)∧(p→q) ≡ (∼p∨q)∧(∼p∨q)

** เปลี่ยน “ถ้า…แล้ว…” เป็น “หรือ” ง่ายๆ ด้วยประโยค “หน้าเปลี่ยนไป “หรือ” หลังเฉยๆ วิธีนี้ใช้ได้ทั้งไปและกลับ

เช่น

p→q จะเปลี่ยนเป็น “หรือ” : หน้าเปลี่ยนไป คือ ประพจน์ข้างหน้าเปลี่ยนเป็นนิเสธ จะได้ ∼p “หรือ” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p∨q

p∨q จะเปลี่ยนเป็น “ถ้า…แล้ว…” : หน้าเปลี่ยนไป คือ ประพจน์ p เปลี่ยนเป็น นิเสธของ p จะได้ ∼p “แล้ว” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p→q

เราสามารถตรวจสอบว่าประพจน์สมมูลกันหรือไม่ด้วยการสร้างตารางค่าความจริง หรืออาจจะใช้ตัวอย่างการสมมูลข้างต้นมาช่วยตรวจสอบก็ได้(ใช้สูตร)

**การใช้สูตร เราจะทำให้ตัวเชื่อมเหมือนกันและตำแหน่งเดียวกัน เพื่อจะได้สรุปได้ว่าประพจน์ทั้งสองสมมูลกันหรือไม่

เช่น จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ p→∼q กับ q→∼p

วิธีที่ 1 สร้างตารางค่าความจริงได้ ดังนี้

จากตารางค่าความจริง จะเห็นว่า ค่าความจริงของ p→∼q กับ q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้น p→∼q กับ q→∼p สมมูลกัน

วิธีที่2 ใช้สูตร เราจะสลับ q ให้มาอยู่ข้างหน้า แต่ “→” ไม่สามารถสลับที่ได้ต้องเปลี่ยนให้เป็นตัวเชื่อมที่สลับที่ได้แล้วค่อยเปลี่ยนกลับมาเป็น “→”

ดังนั้น จะได้ว่า p→∼q กับ q→∼p สมมูลกัน

ลองมาดูอีก 1 ตัวอย่างค่ะ

จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ ∼p∨∼q กับ ∼p→q

วิธีที่ 1 สร้างตารางค่าความจริง

จากตารางจะเห็นว่า ค่าความจริงของ ∼p∨∼q กับ ∼p→q ต่างกันบางกรณี ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

วิธีที่ 2 ใช้สูตร เราจะทำให้ ∼p∨∼q อยู่ในรูป “ถ้า…แล้ว…”

ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

 

น้องๆลองสังเกตดู จะเห็นว่าการใช้ตารางนั้นยุ่งยากและค่อนข้างเสียเวลา

ดังนั้น น้องๆควรหมั่นฝึกฝนทำแบบฝึกหัดการตรวจสอบการสมมูลโดยวิธีใช้สูตร เพื่อจะได้ทำอย่างคล่องแคล่ว แม่นยำ และรวดเร็ว

 

ตัวอย่าง

เนื่องจากการตรวจสอบโดยใช้ตารางค่าความจริงเป็นวิธีที่ไม่ได้มีอะไรยาก ตัวอย่างต่อไปนี้เราจึงจะใช้วิธีใช้สูตร เพื่อให้น้องๆเข้าใจมากยิ่งขึ้นค่ะ

จงตรวจสอบว่าประพจน์ต่อไปนี้สมมูลกันหรือไม่

1.) ∼(p↔q) กับ ∼p↔∼q

วิธีทำ

ดังนั้น ∼(p↔q) กับ ∼p↔∼q ไม่สมมูลกัน

2.) p→(q→r) กับ (p∧q)→r

วิธีทำ

ดังนั้น p→(q→r) กับ (p∧q)→r สมมูลกัน

3.) ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r)

วิธีทำ

ดังนั้น ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r) สมมูลกัน

 

ไม่มีใครเข้าใจตั้งแต่ครั้งแรกที่เรียน ถ้าน้องเปิดใจให้วิชาคณิตศาสตร์และขยันทำโจทย์ คณิตศาสตร์ก็เป็นอีกหนึ่งวิชาที่สนุก สู้ๆนะคะ❤️❤️

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ บทความนี้ ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ ซึ่งการแก้โจทย์ปัญหานั้น น้องๆจะต้องอ่านทำความเข้าใจกับโจทย์ให้ละเอียด และพิจารณาอย่างรอบคอบว่าโจทย์กำหนดอะไรมาให้บ้างและโจทย์ต้องการให้หาอะไร จากนั้นจะสามารถหาค่าของสิ่งที่โจทย์ต้องการได้โดยใช้ความรู้เรื่องการคูณไขว้ สัดส่วน และร้อยละ ก่อนจะเรียนรู้เรื่องนี้ น้องๆจำเป็นต้องมีความรู้ในเรื่อง สัดส่วน เพิ่มเติมได้ที่  ⇒⇒ สัดส่วน ⇐⇐ โจทย์ปัญหาเกี่ยวกับสัดส่วน ตัวอย่างที่ 1  อัตราส่วนของอายุของนิวต่ออายุของแนน เป็น 2

สัดส่วน

บทความนี้ได้รวบรวมความรู้เรื่อง สัดส่วน รวมทั้งโจทย์ปัญหาเกี่ยวกับสัดส่วน ซึ่งได้รวบรวมเนื้อหาและเขียนอธิบายไว้อย่างชัดเจน รวมถึงมีคลิปวิดีโอการสอน เพื่ออำนวยความสะดวกให้กับน้องๆ สามารถเรียนรู้ได้ทุกที่ทุกเวลา แต่ก่อนจะเรียนรู้เรื่องสัดส่วนนั้น น้องๆจำเป็นต้องมีความรู้ในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ อัตราส่วนของจำนวนหลายๆจำนวน ⇐⇐ สัดส่วน สัดส่วน คือ ประโยคที่แสดงการเท่ากันของอัตราส่วนสองอัตราส่วน อัตราส่วนทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกันหรือในทิศทางตรงกันข้ามก็ได้ ชนิดของสัดส่วน สัดส่วนมี 2 ชนิด คือ สัดส่วนตรง และ สัดส่วนผกผัน  

เรียนรู้คุณค่าและนำสุภาษิตสอนหญิงไปใช้ในชีวิตประจำวัน

สุภาษิตสอนหญิง เป็นผลงานที่สุนทรภู่มุ่งสอนและเตือนสติผู้หญิงไทยให้มีกิริยามารยาทและการดำเนินชีวิตตามแบบแผนของสังคมไทยทั้งการพูด การเดิน การคบเพื่อน การวางตัว และความกตัญญู ซึ่งเป็นค่านิยมของคนในอดีตที่ยังคงสืบสานเจตนารมณ์มาจนถึงปัจจุบัน บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึงคุณค่าและการนำไปประยุกต์ใช้ในชีวิตประจำวันกันค่ะ   ความสำคัญและคำสอนในเรื่อง สุภาษิตสอนหญิง   เป็นวรรณคดีคำสอนที่ช่วยเตือนสติหญิงไทยให้ประพฤติตัวอยู่ในประเพณีอันดีงามของไทยตั้งแต่เริ่มโตเป็นสาวไปจนถึงวัยที่แต่งงานมีครอบครัว ดังนี้   สาววัยแรกรุ่น : ควรวางตัวให้สมฐานะ ทั้งการแต่งกายและกิริยามารยาท     หมายถึง สาวแรกรุ่นเปรียบเหมือนมณี

หลักการใช้คำราชาศัพท์ รู้ไว้ไม่สับสน

เมื่อได้รู้ความหมาย ที่มาและความสำคัญของคำราชาศัพท์ รวมถึงคำศัพท์หมวดร่างกายไปแล้ว น้อง ๆ ก็คงจะสงสัยใช่ไหมคะ ว่าหลักการใช้คำราชาศัพท์ มีอะไรบ้าง และใช้อย่างไร ต้องใช้แบบไหนถึงจะถูก บทเรียนในวันนี้เราจะมาเรียนรู้หลักการใช้คำราชาศัพท์ที่ถูกต้องกันค่ะ ไปเรียนรู้พร้อม ๆ กันแลย   หลักการใช้คำราชาศัพท์ กับราชวงศ์ไทย     ลำดับพระอิสริยศักดิ์ของพระบรมราชวงศ์สามารถลำดับอย่างคร่าว ๆ ได้ดังนี้ พระบาทสมเด็จพระเจ้าอยู่หัว, สมเด็จพระบรมราชินีนาถ สมเด็จพระราชินี,

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐ สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x +

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1