ระบบจำนวนจริง

ระบบจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบจำนวนจริง

“ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ

โครงสร้าง ระบบจำนวนจริง

มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น

 

โครงสร้าง

ระบบจำนวนจริง

 

 

จำนวนจริง

จำนวนจริงคือจำนวนที่ประกอบไปด้วย จำนวนตรรกยะและจำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ \mathbb{R} 

 

จำนวนเต็ม

จำนวนนับหรือจำนวนเต็มบวก เขียนแทนด้วยสัญลักษณ์ \mathbb{N} หรือ I^+ คือจำนวนที่เอาไว้ใช้นับสิ่งต่างๆ

เซตของจำนวนนับเป็นเซตอนันต์ นั่นคือ ระบบจำนวนจริง = {1,2,3,…}

จำนวนเต็มศูนย์ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง มีสมาชิกเพียงตัวเดียว คือ I^0 = {0}

จำนวนเต็มลบ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง  คือ ตัวผกผันการบวกของจำนวนนับ ซึ่งตัวผกผัน คือตัวที่เมื่อนำมาบวกกับจำนวนนับจะทำให้ผลบวก เท่ากับ 0 เช่น จำนวนนับคือ 2 ตัวผกผันก็คือ -2 เพราะ 2+(-2) = 0 สมาชิกของเซตของจำนวนเต็มลบมีจำนวนเป็นอนันต์ นั่นคือ I^- = {…,-3,-2,-1}

จำนวนตรรกยะ

จำนวนตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็มได้ ซึ่งก็คือ ตัวเศษและตัวส่วนจะต้องเป็นจำนวนเต็มเท่านั้น (เต็มบวก, เต็มลบ) เช่น  \frac{1}{2}  จะเห็นว่า ตัวเศษคือ 1 ตัวส่วนคือ 2 ซึ่งทั้ง 1 และ 2 เป็นจำนวนเต็ม และจำนวนตรรกยะยังสามารถเขียนในรูปทศนิยมซ้ำได้อีกด้วย เช่น 3.\dot{3} เป็นต้น

น้องๆสงสัยไหมว่าทำไมจำนวนเต็มถึงอยู่ในจำนวนตรรกยะ?? 

ลองสังเกตตัวอย่างต่อไปนี้ดูค่ะ

-3, 2, 0

-3 เกิดจากอะไรได้บ้าง >>> \frac{-3}{1}, \frac{3}{-1}, \frac{-6}{2}  , … จะเห็นว่าเศษส่วนที่ยกตัวอย่างมานี้ มีค่าเท่ากับ -3 และเศษส่วนเหล่านี้เป็นจำนวนตรรกยะ

2 เกิดจากอะไรได้บ้าง >>> ระบบจำนวนจริง, … จะเห็นว่า 2 สามารถเขียนเป็นเศษส่วนของจำนวนเต็มได้

0 เกิดจากเศษส่วนได้เช่นกัน เพราะ 0 ส่วนอะไรก็ได้ 0  ยกเว้น!!! ระบบจำนวนจริง เศษส่วนนี้ไม่นิยามนะคะ 

ดังนั้น จำนวนเต็มเป็นจำนวนตรรกยะ

ข้อควรระวัง  ตัวเศษสามารถเป็นจำนวนเต็มอะไรก็ได้ แต่!! ตัวส่วนต้องไม่เป็น 0 นะจ๊ะ

เช่น  ระบบจำนวนจริง แบบนี้ถือว่าไม่เป็นจำนวนตรรกยะนะคะ

 

จำนวนอตรรกยะ

จำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มได้ 

เช่น ทศนิยมไม่รู้จบ 1.254545782268975456… , \sqrt{2}, \sqrt{3} เป็นต้น

**√¯ อ่านว่า square root เป็นสัญลักษณ์แทนค่ารากที่ 2 

เช่น 

ระบบจำนวนจริง คือ รากที่ 2 ของ 2 หมายความว่า ถ้านำ \sqrt{2} × \sqrt{2} แล้วจะเท่ากับ 2 

\sqrt{3} คือ รากที่ 2 ของ 3 หมายความว่า ถ้านำ ระบบจำนวนจริง × \sqrt{3} แล้วจะเท่ากับ 3 

สรุปก็คือ รากที่ 2 คือ ตัวที่นำมายกกำลัง 2 แล้วทำให้ square root หายไป

 

ตัวอย่าง ระบบจำนวนจริง

พิจารณาจำนวนต่อไปนี้ แล้วตอบคำถามว่าจำนวนนั้นเป็นจำนวนตรรกยะ, อตรรกยะ, จำนวนจริง

1.) 1.5 

แนวคำตอบ 1.5 สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะ และจำนวนตรรกยะอยู่ในเซตของจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

2.) ระบบจำนวนจริง 

แนวคำตอบ 1.\dot{3} เป็นทศนิยมที่ซ้ำ 3 ซึ่งก็คือ 1.33333333… ไปเรื่อยๆ และสามารถเขียนเป็นเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.\dot{3} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

3.) π 

แนวคำตอบ π = 3.14159265358979323846264338327950288420…. จะเห็นว่าเป็นเลขทศนิยมไม่ซ้ำและไม่สิ้นสุด ดังนั้น π เป็นจำนวนอตรรกยะ

และเนื่องจาก จำนวนอตรรกยะก็อยู่ในเซตของจำนวนจริง

ดังนั้น  π เป็นจำนวนอตรรกยะและจำนวนจริง

 

4.) \sqrt{5} 

เนื่องจาก \sqrt{5} ไม่ใช่จำนวนเต็ม และไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มที่ส่วนไม่เป็น 0 ได้ และไม่สามารถเขียนในรูปทศนิยมซ้ำได้ 

ดังนั้น \sqrt{5} เป็นจำนวนอตรรกยะและเป็นจำนวนจริง

 

5.) \sqrt{16}

เนื่องจาก \sqrt{16} = ระบบจำนวนจริง = 4 และ 4 เป็นจำนวนเต็ม

ดังนั้น  \sqrt{16} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

6.) \sqrt{25}

เนื่องจาก \sqrt{25} = \sqrt{5}\times \sqrt{5} = 5 

ดังนั้น \sqrt{25} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

วีดิโอ ระบบจำนวนจริง

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

เตรียมสอบเข้า ม.1 โรงเรียนสวนกุหลาบวิทยาลัย

เตรียมสอบเข้าม.1 โรงเรียนสวนกุหลาบวิทยาลัย สวัสดีค่ะน้อง ๆ วันนี้มาพบกับพี่แอดมินและ Nock Academy อีกเช่นเคย ซึ่งเรายังคงอยู่กับหัวข้อของการเตรียมสอบเข้าม.1กันนะคะ วันนี้แอดมินจะพาน้อง ๆ ไปรู้จักกับโรงเรียนสวนกุหลาบวิทยาและการเตรียมตัวสอบเข้าในระดับชั้นม.1ของโรงเรียนแห่งนี้กันค่ะ ก่อนอื่นแอดมินต้องขอกล่าวประวัติคร่าว ๆ ของโรงเรียนให้ทุกคนได้รู้จักกันก่อนนะคะ โรงเรียนสวนกุหลาบวิทยาเป็นโรงเรียนชายล้วนที่ก่อตั้งขึ้นมาในสมัยพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว (รัชกาลที่ 5) ถือเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย ที่มีความโดดเด่นในเรื่องของวิชาการ ภาษาและความเป็นผู้นำ โดยศิษย์เก่าที่สำเร็จการศึกษามาจากโรงเรียนสวนกุหลาบวิทยาลัยแห่งนี้หลายคนเป็นผู้ที่มีชื่อเสียงและประสบความเร็จจึงทำให้ชื่อเสียงของโรงเรียนสวนกุหลาบวิทยาลัยนั้นเป็นที่รู้จักกันอย่างแพร่หลายในสังคมไทยมาอย่างยาวนาน หลักสูตรสวนกุหลาบวิทยาลัย ม.ต้น ในปัจจุบันโรงเรียนสวนกุหลาบวิทยาลัยได้มีการปรังปรุงและพัฒนาหลักสูตรให้มีความเท่าทันสังคมไทยในปัจจุบันมากยิ่งขึ้น

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์ คำคุณศัพท์ (Adjective) คืออะไร? ก่อนเราจะเริ่มเข้าเนื้อหา ทางผู้เขียนก็อยากจะพูดถึงความหมายและความสำคัญของคำคุณศัพท์ (Adjective) กันก่อน คำคุณศัพท์ (Adjectives) มักจะุถูกใช้ในการอธิบายลักษณะรูปร่างทางกายภาพของทั้งสิ่งของและสิ่งมีชีวิตที่รวมถึงตัวของมนุษย์เอง โดยที่เราจะมาเรียนกันวันนี้คือการที่บางครั้ง คำคุณศัพท์ (Adjective) นั้นจะมีลักษณะที่ถูกใช้อธิบายลักษณะทางกายภาพที่มากกว่าหนึ่งอย่าง ในภาษาไทยของเรา ก็มีการเรียกคำคุณศัพท์ หรือที่เรียกว่า order of adjective ด้วยเหมือนกัน จากศึกษาและพูดคุยกับนักศึกษาศาสตร์ พบว่า การใช้ภาษาไทยในปัจจุบันไม่ได้มีการกำหนดการเรียงลำดับคำคุณศัพท์แบบภาษาอังกฤษที่ชัดเจน

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1