ฟังก์ชันประกอบ

สารบัญ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C

เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof 

ฟังก์ชันประกอบ

จากรูป จะเห็นว่า สมาชิกในเซต B นั้น เป็นทั้งเรนจ์ของ f และเป็นโดเมนของ g

ดังนั้น การที่จะหา gof ได้  y ต้องอยู่ในเรนจ์ของฟังก์ชัน f และ โดเมนของฟังก์ชัน g พร้อมๆกัน นั่นคือ \mathrm{R_f \cap D_g \neq \O}

และจากรูปจะเห็นว่า

f เป็นความสัมพันธ์จาก A ไป B

g เป็นความสัมพันธ์จาก B ไป C

gof เป็นความสัมพันธ์จาก A ไป C

 

บทนิยาม

ให้ f และ g เป็นฟังก์ชัน และ ฟังก์ชันประกอบ แล้วฟังก์ชันประกอบของ f และ g คือ gof โดยที่ gof(x) = g(f(x))

และ \mathrm{D_{gof}} = {x ∈ \mathrm{D_f} : f(x) ∈ \mathrm{D_g}}

 

เช่น

ให้ f = {(1, 2), (2, 4), (3, 3), (4, 5)} และ g = {(1, 3), (2, 5), (3, 2), (4, 4)} จงหา gof

ขั้นแรก คือเราต้องตรวจสอบก่อนว่า ฟังก์ชันประกอบ

\mathrm{R_f} = {2, 3, 4, 5} และ \mathrm{D_g} = {1, 2, 3, 4} ดังนั้น \mathrm{R_f\cap D_g} = {2, 3, 4} นั่นคือ ฟังก์ชันประกอบ

ดังนั้น หา gof ได้

ฟังก์ชันประกอบ

ตัวอย่างการหาฟังก์ชันประกอบ

ให้ f(x) = 2x – 3 และ g(x) = x² + 5

จงหา gof, fog, gof(2), fog(3)

พิจารณา \mathrm{D_f} = \mathbb{R} จะได้ว่า \mathrm{R_f} = \mathbb{R}  และพิจารณา  \mathrm{D_g} = \mathbb{R} จะได้ \mathrm{R_g}=\mathbb{R}

จาก  \mathrm{R_f} = \mathbb{R}  และ  \mathrm{D_g} = \mathbb{R}  จะได้ว่า ฟังก์ชันประกอบ นั่นคือ หา gof ได้

จาก \mathrm{R_g}=\mathbb{R} และ \mathrm{D_f} = \mathbb{R} จะได้ว่า ฟังก์ชันประกอบ  นั่นคือ หา fog ได้

 gof

ฟังก์ชันประกอบ fog

ฟังก์ชันประกอบ

gof(2)

ฟังก์ชันประกอบ

fog(3)

ฟังก์ชันประกอบ

 

 

 

 

 

 

0

ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
การวัด

การวัดและความเป็นมาของการวัด

ในบทความนี้เราจะได้เรียนรู้ความเป็นมาของการวัดในหลายๆมิติ จนกระทั่งวิวัฒนาการที่ทำให้ได้ความแม่นยำในการวัดอย่างเป็นมาตรฐานมากขึ้นเรื่อยๆ

การหารทศนิยม

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

อสมการ

อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ

เลขยกกำลัง

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น , , , 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น , เป็นต้น โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ เมื่อ k และ

รูปแบบของประพจน์ที่สมมูลกัน

การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้