ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C

เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof 

ฟังก์ชันประกอบ

จากรูป จะเห็นว่า สมาชิกในเซต B นั้น เป็นทั้งเรนจ์ของ f และเป็นโดเมนของ g

ดังนั้น การที่จะหา gof ได้  y ต้องอยู่ในเรนจ์ของฟังก์ชัน f และ โดเมนของฟังก์ชัน g พร้อมๆกัน นั่นคือ \mathrm{R_f \cap D_g \neq \O}

และจากรูปจะเห็นว่า

f เป็นความสัมพันธ์จาก A ไป B

g เป็นความสัมพันธ์จาก B ไป C

gof เป็นความสัมพันธ์จาก A ไป C

 

บทนิยาม

ให้ f และ g เป็นฟังก์ชัน และ ฟังก์ชันประกอบ แล้วฟังก์ชันประกอบของ f และ g คือ gof โดยที่ gof(x) = g(f(x))

และ \mathrm{D_{gof}} = {x ∈ \mathrm{D_f} : f(x) ∈ \mathrm{D_g}}

 

เช่น

ให้ f = {(1, 2), (2, 4), (3, 3), (4, 5)} และ g = {(1, 3), (2, 5), (3, 2), (4, 4)} จงหา gof

ขั้นแรก คือเราต้องตรวจสอบก่อนว่า ฟังก์ชันประกอบ

\mathrm{R_f} = {2, 3, 4, 5} และ \mathrm{D_g} = {1, 2, 3, 4} ดังนั้น \mathrm{R_f\cap D_g} = {2, 3, 4} นั่นคือ ฟังก์ชันประกอบ

ดังนั้น หา gof ได้

ฟังก์ชันประกอบ

ตัวอย่างการหาฟังก์ชันประกอบ

ให้ f(x) = 2x – 3 และ g(x) = x² + 5

จงหา gof, fog, gof(2), fog(3)

พิจารณา \mathrm{D_f} = \mathbb{R} จะได้ว่า \mathrm{R_f} = \mathbb{R}  และพิจารณา  \mathrm{D_g} = \mathbb{R} จะได้ \mathrm{R_g}=\mathbb{R}

จาก  \mathrm{R_f} = \mathbb{R}  และ  \mathrm{D_g} = \mathbb{R}  จะได้ว่า ฟังก์ชันประกอบ นั่นคือ หา gof ได้

จาก \mathrm{R_g}=\mathbb{R} และ \mathrm{D_f} = \mathbb{R} จะได้ว่า ฟังก์ชันประกอบ  นั่นคือ หา fog ได้

 gof

ฟังก์ชันประกอบ fog

ฟังก์ชันประกอบ

gof(2)

ฟังก์ชันประกอบ

fog(3)

ฟังก์ชันประกอบ

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

NokAcademy_ ม.4Gerund

Gerund

  สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund   อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม

ฟังก์ชันเอกซ์โพเนนเชียล

ฟังก์ชันเอกซ์โพเนนเชียล

ฟังก์ชันเอกซ์โพเนนเชียล ฟังก์ชันเอกซ์โพเนนเชียล คือ ฟังก์ชันที่เขียนอยู่ในรูป {(x, y) ∈ ×   : y = } โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1 เช่น  , , ซึ่งพูดอีกอย่างก็คือ

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล สมการเอกซ์โพเนนเชียล เป็นสมการที่จะมีเลขชี้กำลังเป็นตัวแปร เช่น ,   จากบทความที่ผ่านมาเราได้พูดถึงฟังก์ชันเอกซ์โพเนนเชียลไปแล้ว ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับการแก้สมการเอกซ์โพเนนเชียลซึ่งมีหลายวิธี  ซึ่งเรื่องสมการเอกซ์โพเนนเชียลนี้มักจะออกสอบบ่อยเรียกได้ว่าทุกปีเลย ดังนั้นวันนี้เราเลยยจะมาสอนน้องๆแก้สมการ และให้เทคนิคการแก้สมการเอกซ์โพเนนเชียล สำหรับใครที่ยังไม่ได้ทำความรู้จักกับฟังก์ชันเอกซ์โพเนนเชียลสามารถเข้าไปดูตามลิงค์นี้เลยค่ะ !!!ฟังก์ชันเอกซ์โพเนนเชียล!!! การแก้สมการเอกซ์โพเนนเชียล วิธีที่ 1 : ทำฐานให้เหมือนกัน เมื่อฐานเท่ากันแล้ว เราก็จะได้ว่าเลขชี้กำลังก็จะเท่ากันด้วย ตัวอย่าง    วิธีที่ 2 : ทำเลขชี้กำลังให้เหมือนกัน

แผนภูมิแท่ง และการเปรียบเทียบข้อมูล

บทความนี้จะพูดถึงการนำเสนอข้อมูลในรูปแบบของแผนภูมิแท่งไม่ว่าจะเป็นการเปรียบเทียบข้อมูล 2 จำนวน และ 3 จำนวน น้องๆจะสามารถนำข้อมูลที่สำรวจมาเขียนเป็นแผนภูมิแท่งได้และจะง่ายต่อการนำเสนอมากยิ่งขึ้น

เรียนรู้ตัวบทและคุณค่าในสังข์ทอง ตอน กำเนิดพระสังข์

สังข์ทอง เป็นวรรณคดีที่มีมาตั้งแต่สมัยโบราณแต่ได้รับความนิยมมาจนถึงปัจจุบัน เพราะถูกนำไปปรับปรุงเป็นบทละครovdในรัชกาลที่ 2 จนได้มาอยู่ในแบบเรียนภาษาไทย นอกจากนี้หนึ่งในตอนที่สำคัญอย่างตอน กำเนิดพระสังข์ นี้ก็ยังเป็นอีกตอนที่สำคัญเพราะมักถูกหยิบยกมาทำเป็นนิทานสำหรับเด็ก แถมยังเคยได้รับรางวัลหนังสือดีสำหรับเด็ก และได้ชื่อว่าเป็นหนังสือดีสำหรับเด็กและเยาวชนในปี 2561 อีกด้วย บทเรียนในวันนี้จะพาน้อง ๆ ไปศึกษาตัวบทเด่น ๆ ที่น่าสนใจและคุณค่าในตอนนี้เพื่อไขข้อข้องใจว่าทำไมวรรณคดีที่ถูกแต่งขึ้นเมื่อหลายร้อยปีก่อนถึงมีคุณค่าและอิทธิพลกับเด็กไทย ถ้าพร้อมแล้วเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ     ถอดความ กล่าวถึงพระสังข์เมื่อตอนเกิดว่าเป็นเทพลงมาเกิด

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1