ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

หลักการประมาณค่าทศนิยมมีขั้นตอนดังนี้

         1.พิจารณาเลขโดดที่อยู่ข้างหลังตำแหน่งที่โจทย์ต้องการประมาณค่า เช่น  3.142857  ประมาณค่าใกล้เคียงทศนิยมให้อยู่ในรูปทศนิยม 2 ตำแหน่ง ตำแหน่งที่ 2 คือหมายเลข 4 ดังนั้นต้องพิจารณาเลขโดดที่อยู่ข้างหลังหมายเลข 4 นั่นคือเลข 2

        2.พิจารณาว่าเลขโดด อยู่ในกลุ่มใด ถ้าเลขโดดเป็น 0-4 แสดงว่าอยู่ในกลุ่มที่ต้องปัดเศษทิ้ง  ถ้าเลขโดดเป็น 5-9 แสดงว่าอยู่ในกลุ่มที่ต้องปัดเศษขึ้น หรือทด 1 ในตำแหน่งข้างหน้า

       3.เมื่อพิจารณาว่าเลขโดดอยู่ในกลุ่มใดแล้วก็จะสามารถประมาณค่าทศนิยมออกมาได้ตามตำแหน่งที่เราต้องการหลักการประมาณค่าทศนิยม

 

ปัดขึ้นปัดลง

 

ประโยชน์ของการประมาณค่าทศนิยม

          การประมาณค่าทศนิยมก็คือการปัดทศนิยมให้อยู่ในตำแหน่งที่ต้องการ มักจะใช้ในการหารทศนิยมเนื่องจากการหารทศนิยมนั้นมักจะได้คำตอบที่เป็นทศนิยมซ้ำหรือเป็นทศนิยมแบบไม่รู้จบการประมาณค่าทศนิยมจึงจะช่วยทำให้คำตอบมีตำแหน่งของทศนิยมที่สั้นลงการประมาณค่าทศนิยม

คลิปตัวอย่างเรื่องประมาณค่าทศนิยม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ม6 Relative Clause

ทบทวนเรื่อง Relative clause + เทคนิค Error Identification

สวัสดีค่ะนักเรียนม. 6 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

การหารเลขยกกำลัง

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก บทความนี้ ได้รวบรวมตัวอย่าง การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการหารของเลขยกกำลัง ก่อนจะเรียนรู้ ตัวอย่างการหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก น้องๆจำเป็นต้องมีความรู้ในเรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ⇐⇐ สมบัติของการหารเลขยกกำลัง  am ÷ an  = am – n     (ถ้าเลขยกกำลังฐานเหมือนกันหารกัน ให้นำเลขชี้กำลังมาลบกัน)

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

มงคลสูตรคำฉันท์ ตัวบท

ศึกษาตัวบทที่น่าสนใจในวรรณคดีเรื่องมงคลสูตรคำฉันท์

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจกันอีกเช่นเคย ต่อจากครั้งก่อนที่เราได้เรียนประวัติความเป็นมา เรื่องย่อ และลักษณะคำประพันธ์ของวรรณคดีพระพุทธศาสนาเรื่องมงคลสูตรคำฉันท์ไปแล้ว วันนี้เราจะมาเรียนกันต่อในส่วนที่เป็นตัวบทสำคัญ โดยจะยกตัวบทที่มีความน่าสนใจพร้อมกับถอดความมงคลทั้ง 38 ประการว่ามีอะไรบ้าง  ดังนั้น ถ้าน้อง ๆ คนไหนพร้อมแล้วก็มาเข้าสู่เนื้อหาไปพร้อม ๆ กันเลย     ประวัติความเป็นมา สำหรับประวัติความเป็นมาของเรื่องมงคลสูตรคำฉันท์มาจากการที่พระบาทสมเด็จพระมงกุฏเกล้าเจ้าอยู่หัว หรือรัชกาลที่ 6 ทรงเลื่อมใสในพระพุทธศาสนาจึงได้ถอดความอุดมมงคล 38

บวกเศษส่วนและจำนวนคละให้ถูกต้องตามหลักการ

การบวกคือพื้นฐานทางคณิตศาสตร์ที่ต้องเจอมาตั้งแต่ระดับอนุบาล แต่นั่นคือการบวกจำนวนเต็มโดยหลักการคือการนับรวมกัน แต่การบวกเศษส่วนและจำนวนคละนั้นเราไม่สามารถนับได้เพราะเศษส่วนไม่ใช่จำนวนนับ บทความนี้จึงจะพาน้อง ๆมาทำความเข้าใจกับหลักการบวกเศษส่วนและจำนวนคละ อ่านบทความนี้จบรับรองว่าน้อง ๆจะเข้าใจและสามารถบวกเศษส่วนจำนวนคละได้เหมือนกับที่เราสามารถหาคำตอบของ 1+1 ได้เลยทีเดียว

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1