ทักษะและกระบวนการทางคณิตศาสตร์ (1)

Picture of phanuphong
phanuphong

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ

  1. คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ
  2. คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง

โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง ๆ จะได้เรียนสูตรทั้งหมด 4 สูตรในบทความนี้

ผลบวกของตัวเลขที่น่าสนใจ

สูตรที่  1)  1 + 2 + 3 + 4 + … + n = \frac{n(n+1)}{2}

โดยสูตรที่ 1 เป็นการบวกกันของตัวเลขที่เรียงกัน เเละเริ่มต้นจากเลข 1 ซึ่งในกรณีที่ตัวเลขเริ่มต้นไม่ได้เริ่มจากเลข 1

สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน = จำนวนพจน์(ปลาย + ต้น) 
.                                                                                           2
โดยจำนวนพจน์ = ปลาย – ต้น + 1

จะเห็นได้ว่าจากสูตรที่ 1 คือสูตรเดียวกันกับสูตรผลบวกของเลขหลายจำนวนที่เรียงกันซึ่งสูตรที่ 1 เริ่มต้นจากเลข 1 เเสดงว่า ต้น = 1, ปลาย = n, เเละจำนวนพจน์ = n เหมือนกันเพราะว่าเป็นการเรียงตัวกันตั้งเเต่ 1 ถึง n ดังนั้นสามารถนำ n มาเป็นจำนวนพจน์ได้

การเลือกใช้สูตรที่ 1 หรือสูตรผลบวกของเลขหลายจำนวนที่เรียงกัน ให้เลือกจากเลขเริ่มต้นจากโจทย์ถ้าเริ่มจากเลข 1 ให้ใช้สูตรที่ 1 ในการหาคำตอบ ถ้าโจทย์เริ่มจากเลขอื่นให้ใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน

สูตรที่ 2) 1 + 3 + 5 + 7 + … + (2n-1) = n^{2}
โดยสูตรที่ 2 เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1

สูตรที่ 3) 1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}
โดยสูตรที่ 3 เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1

สูตรที่ 4) 1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}
โดยสูตรที่ 4 เป็นการหาผลบวกของตัวเลขจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1


ตัวอย่างโจทย์ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ตัวอย่างที่ 1) จงหาผลบวกของ 1 + 2 + 3 + 4 + 5 +… + 71

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 1 ดังนั้นใช้สูตร 1

1 + 2 + 3 + 4 + 5 +… + 71  =  \frac{n(n+1)}{2}

.                                              =  \frac{71(71+1)}{2}

.                                              = \frac{71(72)}{2}

.                                              = \frac{5112}{2}

.                                              = 2556

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 2556

ตัวอย่างที่ 2) จงหาผลบวกของ 40 + 41 + 42 + 43 + … + 68

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 40 ดังนั้นใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน 

40 + 41 + 42 + 43 + … + 68 = (จำนวนพจน์(ปลาย + ต้น))/2

เริ่มจากการหาจำนวนพจน์ก่อน ซึ่งจำนวนพจน์ = ปลาย – ต้น + 1
.                                                                           = 68-40+1
.                                                                           = 29

40 + 41 + 42 + 43 + … + 68 = (29(68 + 40))/2
.                                                  = (29(108))/2
.                                                  = (3132)/2
.                                                  = 1566

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 1566

ตัวอย่างที่ 3) จงหาผลบวกของ 1 + 3 + 5 + 7 + … + 61 

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1 ดังนั้นใช้สูตร 2

1 + 3 + 5 + 7 + … + (2n-1) = n^{2}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 61
.                                                        2n    = 61 + 1
.                                                        2n    = 62
.                                                          n    = 62/2
.                                                          n    = 31

เมื่อ n = 31 เราสามารถหาผลบวกของชุดจำนวนนี้ได้ดังนี้

1 + 3 + 5 + 7 + … + 61 = 61^{2}

1 + 3 + 5 + 7 + … + 61 = 3721

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 3721

ตัวอย่างที่ 4) จงหาผลบวกของ 1^{2} + 2^{2} + 3^{2} + ... + 12^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 3

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{n(n+1)(2n+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(12+1)(2(12)+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(13)(25)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 2(13)(25)

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 650

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 650

ตัวอย่างที่ 5) จงหาผลบวกของ 1^{2} + 3^{2} + 5^{2} + ... + 15^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 4

1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 15
.                                                        2n    = 15 + 1
.                                                        2n    = 16
.                                                          n    = 16/2
.                                                          n    = 8

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{n(2n-1)(2n+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(2(15)-1)(2(15)+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(29)(31)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 5(29)(31)

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 4495

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 4495

หากน้อง ๆ สามารถหาผลบวกของตัวเลขที่น่าสนใจได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคตทั้งเรื่องของอนุกรมเเละผลบวกของอนุกรม น้อง ๆ สามารถศึกษา ทักษะเเละกระบวนการทางคณิตศาสตร์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ทักษะเเละกระบวรการทางคณิตศาสตร์ (1)

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ทักษะและกระบวนการทางคณิตศาสตร์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Comparison of Adjectives

การใช้ประโยค Comparative Adjectives

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง การใช้ ประโยค ประโยค Comparative Adjectives หรือ อีกชื่อหนึ่งคือ Comparison of Adjectives: การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลยจร้า   คำศัพท์สำคัญ: Comparative VS Comparison comparative (Adj.)

ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย ความเป็นมาของลิลิตชั้นยอดของเมืองไทย

ลิลิตตะเลงพ่าย ขึ้นชื่อว่าเป็นยอดของลิลิต ที่แต่งดีที่สุด โดยบุคคลที่ได้รับการยกย่องว่าเป็นบุคคลดีเด่นทางด้านวัฒนTรรมของโลก เกริ่นมาเพียงเท่านี้น้อง ๆ ก็คงจะอยากรู้ที่มาและเรื่องของลิลิตตะเลงพ่ายมากขึ้นกว่าเดิมใช่ไหมคะ ถ้าอย่างนั้นเพื่อไม่ให้เป็นการเสียเวลา เราไปเรียนรู้วรรณคดีเรื่องสำคัญของไทยเรื่องนี้กันเลยค่ะ   ลิลิตตะเลงพ่าย ความเป็นมา   ลิลิตตะเลงพ่าย เป็นพระนิพนธ์ของสมเด็จพระมหาสมณเจ้า กรมพระปรมานุชิตชิโนรส รัตนกวีแห่งกรุงรัตนโกสินทร์ พระนามเดิมของพระองค์คือ พระองค์เจ้าวาสุกรี เป็นพระเจ้าลูกยาเธอองค์ที่ 28 ในพระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราช     สมเด็จพระมหาสมณเจ้า

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

past tense

Past Tense ที่มี Time Expressions

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ Past Tense และ Time Expressions ในประโยคดังกล่าว ถ้าพร้อมแล้วเราไปเริ่มกันเลยครับ

Daily Conversation P6

บทสนทนาในชีวิตประจำวันที่ควรรู้

  สวัสดีค่ะนักเรียนป. 6 ที่รักทุกคน เมื่อก่อนการคุยกันผ่านออนไลน์ยังไม่ค่อยเป็นที่นิยมเท่าในปัจจุบันที่เราหลีกเลี่ยงไม่ได้เลยในสถานการณ์ยุคโควิด เป็นเรื่องที่น่าเศร้าเวลาที่เราออกไปไหนไม่ได้ บทสนทนาออนไลน์จึงเป็นสิ่งจำเป็นอย่างมากแต่ไม่ค่อยมีใครพูดถึงสักเท่าไหร่ วันนี้ครูจะพาไปดูบทสนทนาที่อัพเดทแล้วในปัจจุบันรวมทั้งประโยคและวลีที่เราเจอบ่อยในชีวิตประจำวันทั้งชีวิตจริงและบนโลกออนไลน์กันค่ะ ไปลุยกันเลยค่า      การเริ่มบทสนทนากับคนที่เราไม่เคยรู้จักกันมาก่อนเลย     Hi/ Hello/ Is that …? = สวัสดี ที่นั่น ..(เบอร์/ สถานที่)… ใช่ไหม

สำนวนไทยสัตว์น้ำ

สำนวนไทยที่เกี่ยวกับสัตว์น้ำ เรียนรู้ความหมายและที่มา

สำนวนไทย เกี่ยวกับสัตว์น้ำ   สำนวนไทยที่เกี่ยวกับสัตว์น้ำ มีมากมายหลายสำนวน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินผ่านหูกันมาบ้างแล้ว แต่รู้หรือไม่คะว่าทำไมสัตว์น้ำต่าง ๆ ถึงมาอยู่ในสำนวนไทยได้ และสำนวนเหล่านั้นมีที่มาอย่างไร ใช้ในโอกาสใดได้บ้าง วันนี้เรามาเรียนรู้ถึงความหมายและที่มาของสำนวนไทยที่เกี่ยวกับสัตว์น้ำกันค่ะ   ความหมายของสำนวน     สำนวน หมายถึง ถ้อยคำ การพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ขึ้นอยู่กับเรื่องที่กล่าวถึง โดยมีชั้นเชิงของถ้อยคำชวนให้คิดหรือตีความ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1