ทักษะและกระบวนการทางคณิตศาสตร์ (1)

Picture of phanuphong
phanuphong

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ

  1. คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ
  2. คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง

โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง ๆ จะได้เรียนสูตรทั้งหมด 4 สูตรในบทความนี้

ผลบวกของตัวเลขที่น่าสนใจ

สูตรที่  1)  1 + 2 + 3 + 4 + … + n = \frac{n(n+1)}{2}

โดยสูตรที่ 1 เป็นการบวกกันของตัวเลขที่เรียงกัน เเละเริ่มต้นจากเลข 1 ซึ่งในกรณีที่ตัวเลขเริ่มต้นไม่ได้เริ่มจากเลข 1

สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน = จำนวนพจน์(ปลาย + ต้น) 
.                                                                                           2
โดยจำนวนพจน์ = ปลาย – ต้น + 1

จะเห็นได้ว่าจากสูตรที่ 1 คือสูตรเดียวกันกับสูตรผลบวกของเลขหลายจำนวนที่เรียงกันซึ่งสูตรที่ 1 เริ่มต้นจากเลข 1 เเสดงว่า ต้น = 1, ปลาย = n, เเละจำนวนพจน์ = n เหมือนกันเพราะว่าเป็นการเรียงตัวกันตั้งเเต่ 1 ถึง n ดังนั้นสามารถนำ n มาเป็นจำนวนพจน์ได้

การเลือกใช้สูตรที่ 1 หรือสูตรผลบวกของเลขหลายจำนวนที่เรียงกัน ให้เลือกจากเลขเริ่มต้นจากโจทย์ถ้าเริ่มจากเลข 1 ให้ใช้สูตรที่ 1 ในการหาคำตอบ ถ้าโจทย์เริ่มจากเลขอื่นให้ใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน

สูตรที่ 2) 1 + 3 + 5 + 7 + … + (2n-1) = n^{2}
โดยสูตรที่ 2 เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1

สูตรที่ 3) 1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}
โดยสูตรที่ 3 เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1

สูตรที่ 4) 1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}
โดยสูตรที่ 4 เป็นการหาผลบวกของตัวเลขจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1


ตัวอย่างโจทย์ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ตัวอย่างที่ 1) จงหาผลบวกของ 1 + 2 + 3 + 4 + 5 +… + 71

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 1 ดังนั้นใช้สูตร 1

1 + 2 + 3 + 4 + 5 +… + 71  =  \frac{n(n+1)}{2}

.                                              =  \frac{71(71+1)}{2}

.                                              = \frac{71(72)}{2}

.                                              = \frac{5112}{2}

.                                              = 2556

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 2556

ตัวอย่างที่ 2) จงหาผลบวกของ 40 + 41 + 42 + 43 + … + 68

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 40 ดังนั้นใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน 

40 + 41 + 42 + 43 + … + 68 = (จำนวนพจน์(ปลาย + ต้น))/2

เริ่มจากการหาจำนวนพจน์ก่อน ซึ่งจำนวนพจน์ = ปลาย – ต้น + 1
.                                                                           = 68-40+1
.                                                                           = 29

40 + 41 + 42 + 43 + … + 68 = (29(68 + 40))/2
.                                                  = (29(108))/2
.                                                  = (3132)/2
.                                                  = 1566

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 1566

ตัวอย่างที่ 3) จงหาผลบวกของ 1 + 3 + 5 + 7 + … + 61 

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1 ดังนั้นใช้สูตร 2

1 + 3 + 5 + 7 + … + (2n-1) = n^{2}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 61
.                                                        2n    = 61 + 1
.                                                        2n    = 62
.                                                          n    = 62/2
.                                                          n    = 31

เมื่อ n = 31 เราสามารถหาผลบวกของชุดจำนวนนี้ได้ดังนี้

1 + 3 + 5 + 7 + … + 61 = 61^{2}

1 + 3 + 5 + 7 + … + 61 = 3721

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 3721

ตัวอย่างที่ 4) จงหาผลบวกของ 1^{2} + 2^{2} + 3^{2} + ... + 12^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 3

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{n(n+1)(2n+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(12+1)(2(12)+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(13)(25)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 2(13)(25)

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 650

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 650

ตัวอย่างที่ 5) จงหาผลบวกของ 1^{2} + 3^{2} + 5^{2} + ... + 15^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 4

1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 15
.                                                        2n    = 15 + 1
.                                                        2n    = 16
.                                                          n    = 16/2
.                                                          n    = 8

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{n(2n-1)(2n+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(2(15)-1)(2(15)+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(29)(31)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 5(29)(31)

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 4495

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 4495

หากน้อง ๆ สามารถหาผลบวกของตัวเลขที่น่าสนใจได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคตทั้งเรื่องของอนุกรมเเละผลบวกของอนุกรม น้อง ๆ สามารถศึกษา ทักษะเเละกระบวนการทางคณิตศาสตร์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ทักษะเเละกระบวรการทางคณิตศาสตร์ (1)

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ทักษะและกระบวนการทางคณิตศาสตร์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้บทร้องกรองสุภาษิต ตนเป็นที่พึ่งแห่งตน

การนำสุภาษิตมาแต่งเป็นบทร้อยกรอง เรียกว่า บทประพันธ์ร้อยกรองสุภาษิต ซึ่งบทที่น้อง ๆ จะได้เรียนกันในวันนี้คือบทร้อยกรองสุภาษิตเรื่อง ตนเป็นที่พึ่งแห่งตน เราไปดูกันเลยค่ะว่าที่มจากของบทร้อยกรองนี้จะเป็นอย่างไร มาจากสุภาษิตอะไร รวมไปถึงถอดความหมายตัวบท ศึกษาคำศัพท์ที่น่ารู้และศึกษาคุณค่าที่อยู่ในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูพร้อมกันเลย   ความเป็นมา ตนเป็นที่พึ่งแห่งตน     ตนเป็นที่พึ่งแห่งตน ผู้แต่งคือ นายเพิ่ม สวัสดิ์วรรณกิจ เป็นบทร้อยกรองประเภทกลอนแปด พิมพ์รวมอยู่ในหนังสือบทประพันธ์อธิบายสุภาษิตของวรรณคดีสมาคมแห่งประเทศไทย    

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

บวกเศษส่วนและจำนวนคละให้ถูกต้องตามหลักการ

การบวกคือพื้นฐานทางคณิตศาสตร์ที่ต้องเจอมาตั้งแต่ระดับอนุบาล แต่นั่นคือการบวกจำนวนเต็มโดยหลักการคือการนับรวมกัน แต่การบวกเศษส่วนและจำนวนคละนั้นเราไม่สามารถนับได้เพราะเศษส่วนไม่ใช่จำนวนนับ บทความนี้จึงจะพาน้อง ๆมาทำความเข้าใจกับหลักการบวกเศษส่วนและจำนวนคละ อ่านบทความนี้จบรับรองว่าน้อง ๆจะเข้าใจและสามารถบวกเศษส่วนจำนวนคละได้เหมือนกับที่เราสามารถหาคำตอบของ 1+1 ได้เลยทีเดียว

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน มีอะไรบ้างในภาษาไทย

  คำที่ยืมมาจากภาษาญี่ปุ่นและจีน น้อง ๆ ทราบไหมคะว่ามีคำไหนบ้าง ทั้งสองประเทศนี้คือประเทศในแทบเอเชียเหมือนกัน แต่ก็ไม่ได้อยู่ใกล้เรานัก แล้วทำไมถึงมีคำจากภาษาญี่ปุ่นและจีนเข้ามาปะปนอยู่ในชีวิตประจำได้ บทเรียนภาษาไทยเรื่องลักษณะคำที่ยืมมาจากภาษาญี่ปุ่นและจีนในวันนี้จะพาน้อง ๆ ไปศึกษาและทำความเข้าใจเกี่ยวกับคำศัพท์ต่าง ๆ ที่ยืมมา จะมีคำไหนบ้าง ไปดูพร้อมกันเลยค่ะ   ที่มาของภาษาญี่ปุ่นและจีนในภาษาไทย     คำที่ยืมมาจากญี่ปุ่นและจีน มีด้วยกันมากมายหลายคำเลยค่ะ บางคำ อาจจะไม่ทันสังเกตด้วยซ้ำว่าเป็นภาษาญี่ปุ่นกับจีน ไม่ใช่คำภาษาไทย เพราะสองประเทศในเอเชียนี้เข้ามามีอิทธิพลกับประเทศมาตั้งแต่โบราณ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1