จุด : เรขาคณิตวิเคราะห์

จุด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จุด

จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น

จุด

 

ระยะทางระหว่างจุดสองจุด

เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร

โดยจะกำหนดให้ \inline P_{1}(x_{1},y_{1}) และ \inline P_{2}(x_{2},y_{2}) เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก

\inline \mathbf{{\color{DarkOrange} \left | P_{1}P_{2} \right | = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}}

ตัวอย่าง

จุด

ระยะห่างระหว่าง A(1,1) และ B(3,2) คือ               จุด

จุดกึ่งกลางของส่วนของเส้นตรง

ให้ A(x, y) เป็นจุดกึ่งกลางของเส้นตรงที่มีจุดปลายคือจุด \inline P_1(x_1,y_1) และ \inline P_2(x_2,y_2) จะได้ว่า \inline x=\frac{x_1+x_2}{2} และ \inline y=\frac{y_1+y_2}{2}

ตำแหน่งของจุดกึ่งกลางเป็นดังรูป

จุด

ตัวอย่าง

จุด

จุดแบ่งส่วนของเส้นตรงที่ไม่ใช่จุดกึ่งกลาง

กรณีที่จุด A(x, y) เป็นจุดแบ่งเส้นตรงที่ไม่ใช่จุดกึ่งกลาง เช่น

จะได้ว่า {\color{DarkOrange} x=\frac{nx_1+mx_2}{m+n}} และ {\color{DarkOrange} y=\frac{ny_1+my_2}{m+n}}

จุดตัดของเส้นมัธยฐาน

เส้นมัธยฐานคือเส้นตรงที่ลากจากจุดกึ่งกลางของเส้นตรงไปยังจุดยอดด้านตรงข้าม ดังรูป

จากที่น้องๆทราบกันแล้วว่าจุดตัดเส้นมัธยฐานอยู่ตรงไหน ต่อไปเราจะหาพิกัดของจุดตัดนั้นนั้น ซึ่งหาได้จาก

{\color{DarkOrange} x=\frac{x_1+x_2+x_3}{3}} และ {\color{DarkOrange} y=\frac{y_1+y_2+y_3}{3}}

 

ตัวอย่างเกี่ยวกับ จุด

 

1.) ถ้า A(x, y) และ B(3, 5) มีจุดกึ่งกลางคือ (4, -6) จงหาพิกัด A(x, y)

จุด

2.) ให้ A(-6, 4) B(3, 7) เป็นจุดปลายของส่วนของเส้นตรง จงหาพิกัดของ C บนส่วนของเส้นตรง \overline{AB} โดยที่ \overline{AC}:\overline{CB}=1:3

 

3.) หาความยาวของเส้นมัธยฐานของรูปสามเหลี่ยม ABC เมื่อกำหนดให้ พิกัด A, B และ C มีพิกัดเป็น (3, 2), (1, -3) และ (5, -3) ตามลำดับ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Conjunctions of Time

Conjunctions of time

สวัสดีค่ะนักเรียนชั้นม.5 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้ Conjunctions of time” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด Conjunctions of time คืออะไร   Conjunctions of time คือ คำสันธานที่ถือเป็น Subordinating conjunctions รูปแบบหนึ่งที่เน้นบอกเวลา (time) เช่น whenever (

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ การบวกเมทริกซ์ เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน เช่น 1.)  2.)    การลบเมทริกซ์ การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย

ร้อยละ

การคำนวณร้อยละในชีวิตประจำวัน

บทความนี้เราจะได้เรียนรู้ความหมายของคำว่าร้อยละ หรือเปอร์เซ็นต์ รวมทั้งความสัมพันธ์ของอัตราส่วนที่คิดคำนวณเป็นร้อยละ หรือเปอร์เซ็นต์ ที่จะทำให้เราสามารถนำไปใช้ได้จริงในชีวิตประจำวัน

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐ สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x +

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

NokAcademy_ ม6Passive Modals

มารู้จักกับ Passive Modals

สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals” ที่ใช้บ่อยพร้อม เทคนิคการจำและนำไปใช้ และทำแบบฝึกหัดท้ายบทเรียน กันค่า Let’s go! ไปลุยกันโลดเด้อ   Passive Modals คืออะไรเอ่ย   Passive Modals คือ กลุ่มของ Modal verbs ที่ใช้ในโครงสร้าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1