จุด : เรขาคณิตวิเคราะห์

จุด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จุด

จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น

จุด

 

ระยะทางระหว่างจุดสองจุด

เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร

โดยจะกำหนดให้ \inline P_{1}(x_{1},y_{1}) และ \inline P_{2}(x_{2},y_{2}) เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก

\inline \mathbf{{\color{DarkOrange} \left | P_{1}P_{2} \right | = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}}

ตัวอย่าง

จุด

ระยะห่างระหว่าง A(1,1) และ B(3,2) คือ               จุด

จุดกึ่งกลางของส่วนของเส้นตรง

ให้ A(x, y) เป็นจุดกึ่งกลางของเส้นตรงที่มีจุดปลายคือจุด \inline P_1(x_1,y_1) และ \inline P_2(x_2,y_2) จะได้ว่า \inline x=\frac{x_1+x_2}{2} และ \inline y=\frac{y_1+y_2}{2}

ตำแหน่งของจุดกึ่งกลางเป็นดังรูป

จุด

ตัวอย่าง

จุด

จุดแบ่งส่วนของเส้นตรงที่ไม่ใช่จุดกึ่งกลาง

กรณีที่จุด A(x, y) เป็นจุดแบ่งเส้นตรงที่ไม่ใช่จุดกึ่งกลาง เช่น

จะได้ว่า {\color{DarkOrange} x=\frac{nx_1+mx_2}{m+n}} และ {\color{DarkOrange} y=\frac{ny_1+my_2}{m+n}}

จุดตัดของเส้นมัธยฐาน

เส้นมัธยฐานคือเส้นตรงที่ลากจากจุดกึ่งกลางของเส้นตรงไปยังจุดยอดด้านตรงข้าม ดังรูป

จากที่น้องๆทราบกันแล้วว่าจุดตัดเส้นมัธยฐานอยู่ตรงไหน ต่อไปเราจะหาพิกัดของจุดตัดนั้นนั้น ซึ่งหาได้จาก

{\color{DarkOrange} x=\frac{x_1+x_2+x_3}{3}} และ {\color{DarkOrange} y=\frac{y_1+y_2+y_3}{3}}

 

ตัวอย่างเกี่ยวกับ จุด

 

1.) ถ้า A(x, y) และ B(3, 5) มีจุดกึ่งกลางคือ (4, -6) จงหาพิกัด A(x, y)

จุด

2.) ให้ A(-6, 4) B(3, 7) เป็นจุดปลายของส่วนของเส้นตรง จงหาพิกัดของ C บนส่วนของเส้นตรง \overline{AB} โดยที่ \overline{AC}:\overline{CB}=1:3

 

3.) หาความยาวของเส้นมัธยฐานของรูปสามเหลี่ยม ABC เมื่อกำหนดให้ พิกัด A, B และ C มีพิกัดเป็น (3, 2), (1, -3) และ (5, -3) ตามลำดับ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กาพย์พระไชยสุริยา ศึกษาตัวบทที่น่าสนใจและคุณค่าที่อยู่ในเรื่อง

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นวรรณคดีที่ทรงคุณค่า เป็นแบบเรียนภาษาไทยที่มีมาแต่โบราณ นอกจากนี้ยังสอนเรื่องราวต่าง ๆ อีกมากมาก หลังจากที่ได้เรียนรู้เกี่ยวกับประวัติความเป็นมา ลักษณะคำประพันธ์และเนื้อเรื่องกันไปแล้ว เรื่องต่อไปที่น้อง ๆ จะได้เรียนรู้ก็คือตัวบทเด่น ๆ ที่น่าสนใจในเรื่องกาพย์พระไชยสุริยาค่ะ เรามาดูกันดีกว่านะคะว่าในกาพย์พระไชยสุริยาจะมีตัวบทไหนเด่น ๆ และมีคุณค่าอย่างไรบ้าง   ตัวบทที่น่าสนใจในกาพย์พระไชยสุริยา   ลักษณะคำประพันธ์ : กาพย์สุรางคนางค์ 28  

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

NokAcademy_Definite & Indefinite Articles M1

Definite & Indefinite Articles

  Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

กระเช้าสีดา นิทานสอนใจที่สอดแทรกตำนานของพรรณไม้

น้อง ๆ รู้จัก กระเช้าสีดา กันไหมคะ พืชชนิดนี้มีถิ่นกำเนิดอยู่ที่อินเดีย และเป็นพรรณไม้ที่มีตำนานมาจากวรรณคดีที่เราคุ้นเคยกันเป็นอย่างดี ซึ่งก็คือเรื่อง รามเกียรติ์นั่นเองค่ะ แล้ววรรณคดีเรื่องกระเช้าสีดานี้จะมีความเป็นมาและเรื่องย่อที่เกี่ยวกับรามเกียรติ์อย่างไร ถ้าพร้อมแล้วเราไปหาคำตอบด้วยกันเลยค่ะ   ความเป็นมา กระเช้าสีดา     กระเช้าสีดาเป็นนิทานเรื่องหนึ่งในหนังสือรวมนิทานของพระสารประเสริฐ (ตรี นาคะประทีป) แต่เมื่อพ.ศ. 2485 มีลักษณะเป็นร้อยแก้ว เป็นเรื่องราวเกี่ยวกับรูปร่าง ลักษณะนิสัย ความเป็นอยู่ของพวกภูต

กราฟของความสัมพันธ์เชิงเส้น ปก

กราฟของความสัมพันธ์เชิงเส้น

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐ คู่อันดับ กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1