ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ

จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง

Sine function = {(θ, y) | y = sinθ}

cosine function = {(θ, x) | x = cosθ}

จาก P(θ) = (x, y)  และจาก x = cosθ และ y = sinθ

จะได้ว่า P(θ) = (cosθ, sinθ)

โดเมนและเรนจ์ของ sine function และ cosine function

โดเมนของฟังก์ชันไซน์และโคไซน์ คือ จำนวนจริง นั่นคือ θ ∈ \mathbb{R}

เรนจ์ของฟังก์ชันไซน์และโคไซน์คือ [-1, 1] นั่นคือ ค่าของ cosθ และ sinθ จะอยู่ในช่วง [-1, 1]

 

ความสัมพันธ์ของฟังก์ชันไซน์และโคไซน์

พิจารณาสมการวงกลมหนึ่งหน่วย (รัศมีเป็น 1)  x² + y² = 1

เมื่อแทน x = cosθ และ y = sinθ ในสมการของวงกลมหนึ่งหน่วย

จะได้ว่า (cosθ)² + (sinθ)² = 1 สามารถเขียนได้อีกรูปแบบหนึ่ง คือ

cos²θ + sin²θ = 1

การหา ค่าของฟังก์ชันไซน์และโคไซน์

การหาค่าฟังก์ชันไซน์และโคไซน์นั้น น้องๆจะต้องมีพื้นฐานเรื่องความยาวส่วนโค้งและพิกัดจุดปลายส่วนโค้งพร้อมทั้งรู้เรื่องจตุภาคด้วย น้องๆสามารถดูเนื้อหาได้ที่ >>ความยาวส่วนโค้งของวงกลมหนึ่งหน่วย<<

ค่าของฟังก์ชันไซน์และโคไซน์

กำหนดให้ P(θ) = (x, y) และ x = cosθ , y = sinθ

พิจารณา θ = 0 จะได้ว่า พิกัดจุดของ P(0) คือ (1, 0) นั่นคือ P(0) = (1, 0)

ดังนั้น x = 1 และ y = 0 นั่นคือ cos(0) = 1 และ sin(0) = 0

พิจารณาที่ θ = \frac{\pi }{2} จะได้ว่า P( \frac{\pi }{2} ) = (0, 1)

ดังนั้น cos( \frac{\pi }{2} ) = 0 และ sin( \frac{\pi }{2} ) = 1

พิจารณา θ = \pi จะได้ว่า P( \pi) = (-1, 0)

ดังนั้น cos( \pi) = -1 และ sin( \pi) = 0

พิจารณาที่ θ = \frac{3\pi }{2} จะได้ว่า P( \frac{3\pi }{2} ) = (0, -1)

ดังนั้น cos( \frac{3\pi }{2} ) = 0 และ cos( \frac{3\pi }{2} ) = -1

การหาค่า sinθ cosθ โดยใช้มือซ้าย

ค่าของฟังก์ชันไซน์และโคไซน์

  • แต่ละนิ้วจะแทนค่าของ θ ดังรูป
  • เราจะหาค่าโดยการพับนิ้ว เช่น ต้องการหา sin( \frac{\pi }{3} ) เราก็จะพับนิ้วนางลง
  • เราจะให้นิ้วที่พับลงเป็นตัวแบ่งระหว่าง cos กับ sin ซึ่งจะแบ่งออกเป็นฝั่งซ้ายและฝั่งขวา
  • ช่องว่างในรูทคือ จำนวนนิ้วที่เรานับได้เมื่อเราพับนิ้วลง
  • หากต้องการค่า sin ให้นำจำนวนนิ้วฝั่งซ้ายมาเติมในรูท
  • และหากต้องการค่า cos ให้นำจำนวนนิ้วฝั่งขวามาเติมในรูท

หากน้องๆยังงงๆเรามาดูตัวอย่างกันค่ะ

ต้องการหาค่า cos( \frac{\pi }{4} ) และ sin( \frac{\pi }{6} )

cos( \frac{\pi }{4} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์เราต้องการหาค่าโคไซน์ ที่ θ = \frac{\pi }{4} ซึ่งตรงกับนิ้วกลาง

ดังนั้นเราจึงพับนิ้วกลางลง และหาค่าโคไซน์เราต้องดูจำนวนนิ้วฝั่งขวาซึ่งก็คือนิ้วที่ถูกระบายด้วยสีส้ม จะเห็นว่ามี 2 นิ้ว ดังนั้น cos( \frac{\pi }{4} ) = \frac{\sqrt{2}}{2}

 

sin( \frac{\pi }{6} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์ต้องการหาค่าฟังก์ชันไซน์ ที่ θ = \frac{\pi }{6} เราจึงพับนิ้วชี้ลง และดูจำนวนนิ้วฝั่งซ้ายซึ่งก็คือนิ้วที่ถูกทาด้วยสีฟ้า ดังนั้น sin( \frac{\pi }{6} ) = \frac{1}{2}

แล้วสมมติว่า θ เป็นค่าอื่นๆนอกเหนือจากค่าเหล่านี้ล่ะ เช่น \frac{2\pi }{3} เราจะหายังไงดี???

จริงๆแล้วค่าของ \frac{2\pi }{3} นั้นเราสามารถดูของ \frac{\pi }{3} ได้เลย แต่!!!! เครื่องหมายอาจจะต่างกัน ให้น้องๆสังเกตว่า ค่าของ \frac{2\pi }{3} นั้นอยู่ควอดรันต์ที่เท่าไหร่ แล้วน้องจะรู้ว่าค่า x ควรเป็นลบหรือเป็นบวก ค่า y ควรเป็นลบหรือเป็นบวก

อย่างเช่น cos( \frac{2\pi }{3} )

เรามาดูกันว่า θ = \frac{2\pi }{3} อยู่ควอดรันต์เท่าไหร่

จะเห็นว่าอยู่ควอดรันต์ที่ 2 ซึ่ง (- , +) ดังนั้น ค่า x เป็นจำนวนลบ ค่า y เป็นจำนวนบวก และเรารู้ว่า x = cosθ ดังนั้น ค่า cos( \frac{2\pi }{3} ) เป็นจำนวนลบแน่นอน

จากนั้นใช้มือซ้ายเพื่อหาค่า cos โดยใช้ค่า θ = \frac{\pi }{3} ได้เลย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

ดังนั้น cos( \frac{2\pi }{3} ) = -\frac{1}{2}

 

นอกจากจะดูหาค่าโดยใช้มือซ้ายแล้ว น้องๆสามารถดูตามรูปด้านล่างนี้ได้เลยค่ะ

ในวงกลมที่ระบายสีฟ้านั้น คือค่าของ θ  ซึ่งแต่ละ θ ก็จะบอกพิกัดจุด (x, y) ซึ่งก็คือค่าของ cosθ และ sinθ นั่นเอง

เช่น sin( \frac{5\pi }{6} ) = \frac{1}{2} และ cos( \frac{5\pi }{6} ) = -\frac{\sqrt{3}}{2}

ตัวอย่างการหาค่าฟังก์ชันไซน์และโคไซน์

1) หาค่า sin( \frac{7\pi }{6} )

วิธีทำ หาค่า sin( \frac{\pi }{6} )

จะได้ว่า sin( \frac{\pi }{6} ) = \frac{1}{2}

จากนั้นดูพิกัดจุดของ P( \frac{7\pi }{6} ) จะได้ว่า อยู่ควอดรันต์ที่ 3 ซึ่ง (- , -) นั่นคือ ค่า x เป็นจำนวนลบ (cosθ เป็นจำนวนลบ) และค่า y เป็นจำนวนลบ

และจาก y = sinθ

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}

 

2) หาค่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} )

วิธีทำ จากความสัมพันธ์ของไซน์และโคไซน์ sin²θ + cos²θ = 1

จะได้ว่าค่าของ sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

เนื่องจากว่าเราเรียนคณิตศาสตร์เราจะต้องไม่เชื่ออะไรง่ายๆ ดังนั้นเราจะมาหาค่าโดยใช้วิธีตรงกันค่ะ

จาก sin( \frac{\pi }{6} ) = \frac{1}{2} จะได้ว่า sin²( \frac{\pi }{6} ) = \frac{1}{4} และ cos( \frac{\pi }{6} ) = \frac{\sqrt{3}}{2} จะได้ว่า cos²( \frac{\pi }{6} ) = \frac{3}{4}

ดังนั้น  \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1

ดังนั้น สรุปได้ว่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

 

3) หาค่า cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi )

วิธีทำ จาก cos( \frac{\pi }{2} ) = 0  cos( \frac{3\pi }{2} ) = 0 และ cos( \pi ) = -1

จะได้ว่า cos²( \frac{\pi }{2} ) = 0  cos²( \frac{3\pi }{2} ) = 0 และ cos²( \pi ) = (-1)² = 1

ดังนั้น cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi ) = 0 + 0 – 1 = -1

น้องๆสามารถหาแบบฝึกหัดมาทำเพิ่มเติมโดยใช้กฎมือซ้ายในการช่วยหาค่าฟังก์ชันแต่ทั้งนี้น้องๆก็ต้องมีพื้นฐานเกี่ยวกับความยาวจุดปลายส่วนโค้งด้วยนะคะ และการหาค่าฟังก์นั้นนี้หากน้องๆทำบ่อยจะทำให้น้องจำได้ และเวลาสอบก็จะช่วยให้ทำข้อสอบได้เร็วยิ่งขึ้นด้วยค่ะ

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

เรียนรู้ความเหมือนที่แตกต่างของคำพ้อง

  น้อง ๆ หลายคนคงจะเคยเห็นฝาแฝดกันมาบ้างใช่ไหมคะ แล้วรู้หรือเปล่าคะว่าในภาษาไทยเรานั้นก็มีฝาแฝดเหมือนกัน แต่ฝาแฝดนั้นถูกเรียกว่า คำพ้อง นั่นเองค่ะ หลายคำในภาษาไทยมีจุดที่เหมือนกันแต่ก็มีส่วนที่ต่างกันออกไปด้วย เพื่อไม่ให้สับสนว่าคำไหนคือคำไหน อ่านอย่างไร หมายความว่าอะไรกันแน่ วันนี้เราไปเรียนรู้เรื่องคำพ้องพร้อม ๆ กันเลยค่ะ   คำพ้อง   ความหมายของคำพ้อง     ประเภทของคำพ้อง     คำพ้องเสียง

ปก short answer questions

Short question and Short answer

  สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุยตัวอย่างและวิธีการแต่งประโยคคำถาม ของเรื่อง “Short question and Short answer“ การถามตอบคำถามแบบสั้น หากพร้อมแล้วก็ไปลุยกันเลยจร้า   ความหมาย Short question and Sho rt answer คือการถามตอบแบบสั้นหรือส่วนใหญ่แล้วมักขึ้นต้นคำถามด้วยกริยาช่วย และได้คำตอบขนาดสั้น เช่น Yes, I

โคลงโลกนิติ

ศึกษาตัวบทและคุณค่าที่แฝงอยู่ในโคลงโลกนิติ

หลังจากที่ได้เรียนรู้ความเป็นมาและเนื้อหาในโคลงโลกนิติกันแล้ว น้อง ๆ ก็คงจะอยากรู้กันแล้วใช่ไหมคะว่าตัวบทในโคลงโลกนิติที่มีอยู่มากมายนั้น มีตัวบทไหนที่เด่น ๆ กันบ้าง วันนี้เรามาศึกษาตัวบทที่น่าสนใจเพื่อทำความเข้าใจถึงคติธรรมและคุณค่าที่อยู่ในเรื่องกันค่ะ โคลงโลกนิติ โคลงโลกนิติเป็นบทประพันธ์ที่มีคำสอนมากมาย ไม่ว่าจะเป็นเรื่องของการคบเพื่อน การปฏิบัติตัวกับพ่อแม่ หรือแม้แต่การดำเนินชีวิตในแต่ละวัน เรามาดูตัวบทเด่น ๆ ที่ควรรู้กันทีละบทเลยนะคะว่าแต่ละบทสอนเรื่องอะไรบ้าง   ศึกษาตัวบท     ความหมาย กล่าวถึงปลาร้าที่มีกลิ่นเหม็น และใบคา แม้ใบคาจะเป็นใบไม้ที่ไม่มีกลิ่นเฉพาะตัว แต่เมื่อนำไปห่อปลาร้าก็จะทำให้มีกลิ่นเหม็นจากปลาร้าติดไปด้วย

Imperative Sentence: เรียนรู้การใช้ประโยคคำสั่ง ขอร้องในชีวิตประจำวัน

เชื่อว่าชีวิตประจำวันของน้องๆ ไม่ว่าจะเป็นที่โรงเรียน ที่บ้าน หรือเวลาออกไปเที่ยว น้องๆ อาจจะเคยได้ยินประโยคประมาณนี้กันมาบ้าง

Turn off the computer! (จงปิดคอมพิวเตอร์!)

Please pass me the sugar (ช่วยส่งน้ำตาลมาให้ที)

Drink a lot of water (ดื่มน้ำเยอะๆ)

ประโยคเหล่านี้ภาษาอังกฤษมีชื่อเรียกว่า Imperative Sentence วันนี้เราจะมาดูกันว่า Imperative Sentence คืออะไร และสามารถใช้ในสถานการณ์ไหนได้บ้าง

ความรู้เกี่ยวกับ การสื่อสาร มีอะไรบ้างที่เราควรรู้?

ความรู้เกี่ยวกับการสื่อสาร เป็นเรื่องที่สำคัญอย่างมากในปัจจุบัน แม้ว่าเราจะสื่อสารกับผู้คนอยู่แล้วทุกวัน แต่จะทำอย่างไรให้ตนเองสามารถสื่อสารได้อย่างถูกต้อง มีเรื่องไหนที่ควรรู้และควรระวัง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการสื่อสารให้ดียิ่งขึ้นไปอีก ถ้าอยากรู้แล้วว่าจะเป็นอย่างไรก็ไปดูกันเลยค่ะ   การสื่อสาร คืออะไร?   เป็นกระบวนการถ่ายทอดหรือแลกเปลี่ยนความคิด ข้อมูล ข้อเท็จจริง ความรู้ ความรู้สึก จากบุคคลหนึ่งไปยังอีกบุคคลหนึ่ง ให้มีความเข้าใจตรงกัน     การสื่อสารสำคัญอย่างมากตั้งแต่ในชีวิตประจำวันไปจนถึงอุตสาหกรรม การปกครอง การเมืองและเศรษฐกิจ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1