ความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความสัมพันธ์

ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น

ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ

คู่อันดับ

ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที

เช่น คู่อันดับ (x, y) โดย x แทนเวลาที่ใช้ในการอ่านหนังสือ y แทนจำนวนหน้าของหนังสือที่อ่านแล้ว เมื่อแทนคู่อันดับด้วย (10, 3) หมายความว่าใช้เวลา 10 นาทีในการอ่านหนังสือ และจำนวนหน้าที่อ่านได้คือ 3 หน้า   แต่! ถ้าน้องเขียนคู่อันดับเป็น (3, 10) จะหมายความว่า ใช้เวลา 3 นาที อ่านหนังสือทั้งหมด 10 หน้า จะเห็นว่าความหมายต่างกันโดยสิ้นเชิง ดังนั้นน้องๆควรดูคู่อันดับให้ดีๆนะคะ

โดยทั่วไปแล้ว เราจะใช้ (x, y) หรือ (a, b) เป็นตัวแปรของคู่อันดับในทางคณิตศาสตร์ โดยที่เราจะเรียก x, a ว่า สมาชิกตัวหน้าของคู่อันดับ และเรียก y, b ว่า สมาชิกตัวหลังของคู่อันดับ

 

บทนิยามของคู่อันดับ

กำหนดให้คู่อันดับ (x, y) ใดๆ จะได้ว่า คู่อันดับ (x, y) = (a, b) เมื่อ x = a และ y = b

อธิบายให้เข้าใจก็คือ คู่อันดับ 2 คู่จะเท่ากันได้ สมาชิกตัวหน้าของทั้งสองคู่อันดับจะต้องเท่ากัน และ สมาชิกตัวหลังของคู่อันดับก็ต้องเท่ากันด้วย

เช่น

  1. (x, -5) = (6, y) จะได้ว่า x = 6 และ y = -5
  2. (5x, y + 2) = (10, 3x)

ความสัมพันธ์

 

ผลคูณคาร์ทีเซียน

นิยาม ผลคูณคาร์ทีเซียนของเซต A และ B คือ {(a, b) : a ∈ A และ b ∈ B} เขียนแทนด้วย A × B

แปลให้เข้าใจง่าย ผลคูณคาร์ทีเซียนก็คือ คู่อันดับเซตใหม่ที่เกิดจากการเอาสมาชิกใน A และ B มาจับคู่กัน โดยสมาชิกตัวหน้ามาจาก A และสมาชิกตัวหลังมาจาก B

ตัวอย่าง A = {1, 2, 3}  B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

B × B ={(a, a), (a, b), (b, a), (b, b)}

เราสามารถหาจำนวนคู่อันดับผลคูณคาร์ทีเซียนได้ ด้วยสูตร n(A×B) = n(A) × n(B)

จะได้ว่า n(A×A) = 3 × 3 = 9      n(A×B) = 3 × 2 = 6     n(B×B) = 2 × 2 = 4

ความสัมพันธ์

บทนิยามของความสัมพันธ์

ให้ A และ B เป็นเซตใดๆ เราจะบอกว่า r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B

หมายความว่า คู่อันดับใดๆใน r จะเป็นความสัมพันธืจาก A ไป B ก็ต่อเมื่อ เซตของคู่อันดับเหล่านั้นเป็นสับเซตของผลคูณคาร์ทีเซียน A × B นั่นเอง

เช่น  A = {1, 2, 3}  B = {a, b}

จะได้ว่า  A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

r_{1} = {(1, a), (2, b), (3, b)} เป็นความสัมพันธ์จาก A ไป B เพราะ {(1, a), (2, b), (3, b)} ⊂ A × B

r_2 = {(1, a), (1, b), (2, a), (1, 1)} ไม่เป็นความสัมพันธ์จาก A ไป B เพราะ (1, 1) ไม่เป็นสมาชิกของ A × B นั่นคือ {(1, a), (1, b), (2, a), (1, 1)} ⊄ A × B

ความสัมพันธ์ r ข้างต้นเป็นการเขียนความสัมพันธ์แบบแจกแจงสมาชิก 

 

การเขียนความสัมพันธ์ r แบบบอกเงื่อนไข

 

ให้ A = {1, 2, 3}  B = {1, 2}  และความสัมพันธ์ r = {(x, y) ∈ B × A : x < y}

เราจะได้ B × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

จากเงื่อนไข x < y

ให้เราพิจารณาว่าจากผลคูณคาร์ทีเซียนข้างต้นกว่า มีคู่ไหนตรงตามเงื่อนไขบ้าง

จะได้คู่อันดับ ดังนี้  (1, 2), (1, 3), (2, 3) ดังนั้นจะได้ว่า r = {(1, 2), (1, 3), (2, 3)}

ทำไมถึงต้องพิจารณาเงื่อนไขจากผลคูณคาร์ทีเซียน?

เพราะว่า r นั้นเป็นคู่อันดับที่เป็นสมาชิกของ B × A นั่นเอง

และเรายังได้อีกว่า r เป็นความสัมพันธ์จาก B ไป A

 

เรามาดูตัวอย่างอีกหนึ่งข้อกันค่ะ

ให้ A ={1, 2, 4, 5}   B = {1, 2, 5} และให้ r = {(x, y) ∈ A × B : 2x < y}

จะเขียนคู่อันดับของ r

ความสัมพันธ์

วิดีโอเรื่อง ความสัมพันธ์

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้ที่มาของชาติกำเนิดอันยิ่งใหญ่ มหาเวสสันดรชาดก

หลายคนคงจะเคยได้ยินคำว่า มหาชาติชาดก หรือ มหาเวสสันดรชาดก กันมาบ้างแล้วผ่านสื่อต่าง ๆ แต่รู้หรือไม่คะว่าคำ ๆ นี้มีที่จากอะไร คำว่า มหาชาติ เป็นคำเรียก เวสสันดรชาดก ส่วนชาดกนั้นเป็นชื่อคัมภีร์หนึ่งของพุทธศาสนาที่กล่าวถึงอดีตชาติของพระพุทธเจ้า ดังนั้นมหาเวสสันดรชาดก จึงเป็นเรื่องราวที่เกี่ยวกับชาติกำเนิดอันหยิ่งใหญ่ของพระพุทธเจ้า น้อง ๆ คงสงสัยใช่ไหมคะว่าทำไมเวสสันดรชาดกถึงได้ชื่อว่าเป็นชาดกที่ยิ่งใหญ่ที่สุด ถ้าอยากรู้คำตอบแล้วล่ะก็ เราไปเรียนรู้ความเป็นของเรื่องนี้พร้อมกันเลยค่ะ   มหาเวสสันดรชาดก   มหาชาติชาดก

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

 ฟังก์ชันตรีโกณมิติของมุม ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian) ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ ฟังก์ชันตรีโกณมิติอื่นๆ หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ หน่วยของมุม 1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

เลขยกกำลัง

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น , , , 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น , เป็นต้น โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ เมื่อ k และ

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1