ความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความสัมพันธ์

ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น

ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ

คู่อันดับ

ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที

เช่น คู่อันดับ (x, y) โดย x แทนเวลาที่ใช้ในการอ่านหนังสือ y แทนจำนวนหน้าของหนังสือที่อ่านแล้ว เมื่อแทนคู่อันดับด้วย (10, 3) หมายความว่าใช้เวลา 10 นาทีในการอ่านหนังสือ และจำนวนหน้าที่อ่านได้คือ 3 หน้า   แต่! ถ้าน้องเขียนคู่อันดับเป็น (3, 10) จะหมายความว่า ใช้เวลา 3 นาที อ่านหนังสือทั้งหมด 10 หน้า จะเห็นว่าความหมายต่างกันโดยสิ้นเชิง ดังนั้นน้องๆควรดูคู่อันดับให้ดีๆนะคะ

โดยทั่วไปแล้ว เราจะใช้ (x, y) หรือ (a, b) เป็นตัวแปรของคู่อันดับในทางคณิตศาสตร์ โดยที่เราจะเรียก x, a ว่า สมาชิกตัวหน้าของคู่อันดับ และเรียก y, b ว่า สมาชิกตัวหลังของคู่อันดับ

 

บทนิยามของคู่อันดับ

กำหนดให้คู่อันดับ (x, y) ใดๆ จะได้ว่า คู่อันดับ (x, y) = (a, b) เมื่อ x = a และ y = b

อธิบายให้เข้าใจก็คือ คู่อันดับ 2 คู่จะเท่ากันได้ สมาชิกตัวหน้าของทั้งสองคู่อันดับจะต้องเท่ากัน และ สมาชิกตัวหลังของคู่อันดับก็ต้องเท่ากันด้วย

เช่น

  1. (x, -5) = (6, y) จะได้ว่า x = 6 และ y = -5
  2. (5x, y + 2) = (10, 3x)

ความสัมพันธ์

 

ผลคูณคาร์ทีเซียน

นิยาม ผลคูณคาร์ทีเซียนของเซต A และ B คือ {(a, b) : a ∈ A และ b ∈ B} เขียนแทนด้วย A × B

แปลให้เข้าใจง่าย ผลคูณคาร์ทีเซียนก็คือ คู่อันดับเซตใหม่ที่เกิดจากการเอาสมาชิกใน A และ B มาจับคู่กัน โดยสมาชิกตัวหน้ามาจาก A และสมาชิกตัวหลังมาจาก B

ตัวอย่าง A = {1, 2, 3}  B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

B × B ={(a, a), (a, b), (b, a), (b, b)}

เราสามารถหาจำนวนคู่อันดับผลคูณคาร์ทีเซียนได้ ด้วยสูตร n(A×B) = n(A) × n(B)

จะได้ว่า n(A×A) = 3 × 3 = 9      n(A×B) = 3 × 2 = 6     n(B×B) = 2 × 2 = 4

ความสัมพันธ์

บทนิยามของความสัมพันธ์

ให้ A และ B เป็นเซตใดๆ เราจะบอกว่า r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B

หมายความว่า คู่อันดับใดๆใน r จะเป็นความสัมพันธืจาก A ไป B ก็ต่อเมื่อ เซตของคู่อันดับเหล่านั้นเป็นสับเซตของผลคูณคาร์ทีเซียน A × B นั่นเอง

เช่น  A = {1, 2, 3}  B = {a, b}

จะได้ว่า  A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

r_{1} = {(1, a), (2, b), (3, b)} เป็นความสัมพันธ์จาก A ไป B เพราะ {(1, a), (2, b), (3, b)} ⊂ A × B

r_2 = {(1, a), (1, b), (2, a), (1, 1)} ไม่เป็นความสัมพันธ์จาก A ไป B เพราะ (1, 1) ไม่เป็นสมาชิกของ A × B นั่นคือ {(1, a), (1, b), (2, a), (1, 1)} ⊄ A × B

ความสัมพันธ์ r ข้างต้นเป็นการเขียนความสัมพันธ์แบบแจกแจงสมาชิก 

 

การเขียนความสัมพันธ์ r แบบบอกเงื่อนไข

 

ให้ A = {1, 2, 3}  B = {1, 2}  และความสัมพันธ์ r = {(x, y) ∈ B × A : x < y}

เราจะได้ B × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

จากเงื่อนไข x < y

ให้เราพิจารณาว่าจากผลคูณคาร์ทีเซียนข้างต้นกว่า มีคู่ไหนตรงตามเงื่อนไขบ้าง

จะได้คู่อันดับ ดังนี้  (1, 2), (1, 3), (2, 3) ดังนั้นจะได้ว่า r = {(1, 2), (1, 3), (2, 3)}

ทำไมถึงต้องพิจารณาเงื่อนไขจากผลคูณคาร์ทีเซียน?

เพราะว่า r นั้นเป็นคู่อันดับที่เป็นสมาชิกของ B × A นั่นเอง

และเรายังได้อีกว่า r เป็นความสัมพันธ์จาก B ไป A

 

เรามาดูตัวอย่างอีกหนึ่งข้อกันค่ะ

ให้ A ={1, 2, 4, 5}   B = {1, 2, 5} และให้ r = {(x, y) ∈ A × B : 2x < y}

จะเขียนคู่อันดับของ r

ความสัมพันธ์

วิดีโอเรื่อง ความสัมพันธ์

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

ประโยคและวิธีการใช้ Would like กับ Wh-questions

Hi guys! สวัสดีค่ะนักเรียนชั้นป.5 ที่รักทุกคน วันนี้ครูจะพาไปดูตัวอย่างประโยคและวิธีการใช้ Would like กับ Wh-questions กันค่ะ ไปลุยกันเลย ตารางเปรียบเทียบประโยคก่อนเข้าสู่บทเรียน: คำถาม Wh-questions VS Yes-no Questions ประโยคคำถามแบบ Wh-question “what” ประโยคคำถามที่ใช้ would + Subject +like…

กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้แนะนำการเขียน กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว  ซึ่งจะเชื่อมโยงกับสัญลักษณ์ของอสมการทั้ง 5 สัญลักษณ์ คือ มากกว่า (>), น้อยกว่า (<), มากกว่าหรือเท่ากับ (≥), น้อยกว่าหรือเท่ากับ (≤) และ ไม่ท่ากับ(≠) โดยเขียนแสดงบนเส้นจำนวน จุดทึบและจุดโปร่ง เราจะเลือกใช้จุดทึบ (•) และจุดโปร่ง (°) แทนสัญลักษณ์อสมการ ดังนี้ มากกว่า

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

ช่วงของจำนวนจริง

ช่วงของจำนวนจริง ช่วงของจำนวนจริง เอาไว้บอกขอบเขตของตัวแปรตัวแปรหนึ่ง เช่น x เป็นตัวแปรที่ไม่ทราบค่า a, b เป็นค่าคงที่ใดๆ a < x < b หมายความว่า ค่าของ x อยู่ระหว่าง a ถึง b เป็นต้น ช่วงของจำนวนจริง ประกอบไปด้วย ช่วงเปิดและช่วงปิด

NokAcademy_ ม6Passive Modals

มารู้จักกับ Passive Modals

สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals” ที่ใช้บ่อยพร้อม เทคนิคการจำและนำไปใช้ และทำแบบฝึกหัดท้ายบทเรียน กันค่า Let’s go! ไปลุยกันโลดเด้อ   Passive Modals คืออะไรเอ่ย   Passive Modals คือ กลุ่มของ Modal verbs ที่ใช้ในโครงสร้าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1