การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Articles E5

Articles: a/an/the

สวัสดีค่ะนักเรียนชั้น ป. 6 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable Nouns )

การแยกตัวประกอบ

การแยกตัวประกอบ

การแยกตัวประกอบ การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้ การแยกตัวประกอบ  โดยการคูณ  การแยกตัวประกอบ  โดยการหาร (หารสั้น)         ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ

มารยาทในการฟังที่ดี

มารยาทในการฟังที่ดีควรมีข้อปฏิบัติอย่างไร??

บทนำ สวัสดีน้อง ๆ ทุกคน วันนี้เราจะพาไปพบกับบทเรียนง่าย ๆ ที่สามารถนำไปใช้ในชีวิตประจำวันได้นั่นก็คือเรื่อง มารยาทในการฟังที่ควรปฏิบัติ ซึ่งเป็นเรื่องที่เด็ก ๆ ควรจะเรียนรู้ไว้ เนื่องจากเราต้องใช้ทักษะการฟัง ในทุก ๆ วัน แต่การจะฟังอย่างมีมารยาทนั้นเราจะต้องปฏิบัติอย่างไรบ้าง ถ้าน้อง ๆ คนไหนอยากรู้ เดี๋ยวเราไปดูบทเรียนเรื่องนี้พร้อม ๆ กันเลยดีกว่า     มารยาท

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

คำเชื่อม Conjunction

การใช้คำสันธาน (Conjunctions) เช่น and/ but/ or/ before/ after and etc.

สวัสดีค่ะนักเรียนชั้นม.2 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน (Conjunctions) เช่น and/ but/ or/ before/ after and etc.” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น and/

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1