การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

สารบัญ

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น

ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ

การบวกเมทริกซ์

เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน

เช่น

1.)  การบวก ลบ และคูณเมทริกซ์

2.)  การบวก ลบ และคูณเมทริกซ์

 

การลบเมทริกซ์

การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย คือ มิติของเมทริกซ์ที่จะนำมาบวกกันจะต้องเท่ากัน แต่ต่างกันตรงที่สมาชิกข้างในเมทริกซ์จะต้องนำมาลบกัน เช่น

 

1.) การบวก ลบ และคูณเมทริกซ์

2.) การบวก ลบ และคูณเมทริกซ์

สมบัติการบวกเมทริกซ์

  1. สมบัติปิดการบวก คือ เมทริกซ์ที่มีมิติเดียวกันบวกกันแล้วผลลัพธ์ยังเป็นเมทริกซ์เหมือนเดิมและมิติก็เท่าเดิมด้วย
  2. สมบัติการสลับที่การบวก  คือ ให้ A และ B เป็นเมทริกซ์  จะได้ว่า A +B = B +A
  3. สมบัติการเปลี่ยนหมู่ คือ (A + B) + C = A + (B + C)
  4. สมบัติการมีเอกลักษณ์การบวก ซึ่งเอกลักษณ์การบวกของเมทริกซ์ คือ เมทริกซ์ศูนย์ (สมาชิกทุกตำแหน่งเป็น 0) เขียนแทนด้วย \underbar{0}
  5. สมบัติการมีตัวผกผัน คือ ถ้า A เป็นเมทริกซ์ใดๆแล้วจะได้ว่า (-A) เป็นเมทริกซ์ผกผันของ A ซึ่งเมื่อนำ A มาบวกกับ -A แล้วจะได้เมทริกซ์ศูนย์

 

 

การคูณเมทริกซ์ ด้วยจำนวนจริง

การคูณเมทริกซ์ด้วยจำนวนจริงคือ การนำจำนวนจริงค่าหนึ่งคูณกับเมทริกซ์ ซึ่งวิธีการคูณแบบนี้น้องๆสามารถนำจำนวนจริงนั้นเข้าไปคูณกับสมาชิกในตำแหน่งในเมทริกซ์ (ต้องคูณทุกตัวแหน่ง) และเมทริกซ์นั้นจะเป็นกี่มิติก็ได้ เช่น

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยจำนวนจริง

ให้ A, B เป็นเมทริกซ์ที่มีมิติ \inline m\times n และ c, d เป็นจำนวนจริง

  1. (cd)A = c(dA) = d(cA)  เช่น การบวก ลบ และคูณเมทริกซ์
  2. c(A + B) = cA + cB
  3. (c + d)A = cA + dA
  4. 1(A) = A และ -1(A) = -A

การคูณเมทริกซ์ด้วยเมทริกซ์

เมทริกซ์ที่จะคูณกันได้ต้องมีหลักเกณฑ์ดังนี้

1.) จำนวนหลักของเมทริกซ์ตัวหน้าต้อง เท่ากับ จำนวนแถวของเมทริกซ์ตัวหลัง

2.) มิติของเมทริกซ์ผลลัพธ์จะเท่ากับ จำนวนแถวของตัวหน้าคูณจำนวนหลักของตัวหลัง

เช่น

การบวก ลบ และคูณเมทริกซ์

วิธีการคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยเมทริกซ์

1.) สมบัติการเปลี่ยนหมู่  

ถ้า A, B และ C เป็นเมทริกซ์ที่สามารถคูณติดต่อกันได้ จะได้ A(BC) = (AB)C

2.) สมบัติการมีเอกลักษณ์

เอกลักษณ์การคูณของเมทริกซ์ คือ \inline I_n 

น้องๆสามารถทำความรู้จักกับเมทริกซ์เอกลักษณ์เพิ่มเติม ได้ที่ >>> เมทริกซ์เอกลักษณ์

**เมทริกซ์ที่มีเอกลักษณ์ คือ เมทริกซ์จัตุรัส

3.) สมบัติการรแจกแจง

(A + B)C = AC + BC

A(B +C) = AB + AC

แต่!! เมทริกซ์จะมีสมบัติการแจกแจง เมื่อ A + B, B + C, AB, AC, BC สามารถหาค่าได้

 

สิ่งที่น้องๆต้องรู้เกี่ยวกับการคูณเมทริกซ์ด้วยเมทริกซ์

1.) ไม่มีสมบัติการสลับที่การคูณ นั่นคือ AB ไม่จำเป็นต้องเท่ากับ BA เช่น 

การบวก ลบ และคูณเมทริกซ์

2.) เมื่อ AB = BA จะได้

  1. การบวก ลบ และคูณเมทริกซ์
  2. \inline (A-B)^2=A^2-2AB+B^2
  3. \inline A^2-B^2=(A+B)(A-B)

3.) ถ้า \inline AB=\underbar{0}  ไม่จำเป็นที่ \inline A\neq \underbar{0} หรือ \inline B\neq \underbar{0}

4.) ถ้า \inline AB=AC โดยที่ \inline A\neq \underbar{0} ไม่จำเป็นที่ \inline B=C

 

 

 

 

0

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook

Imperative Sentence: เรียนรู้การใช้ประโยคคำสั่ง ขอร้องในชีวิตประจำวัน

เชื่อว่าชีวิตประจำวันของน้องๆ ไม่ว่าจะเป็นที่โรงเรียน ที่บ้าน หรือเวลาออกไปเที่ยว น้องๆ อาจจะเคยได้ยินประโยคประมาณนี้กันมาบ้าง

Turn off the computer! (จงปิดคอมพิวเตอร์!)

Please pass me the sugar (ช่วยส่งน้ำตาลมาให้ที)

Drink a lot of water (ดื่มน้ำเยอะๆ)

ประโยคเหล่านี้ภาษาอังกฤษมีชื่อเรียกว่า Imperative Sentence วันนี้เราจะมาดูกันว่า Imperative Sentence คืออะไร และสามารถใช้ในสถานการณ์ไหนได้บ้าง

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0 ตัวอย่างสมการกำลังสองตัวแปรเดียว 

การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

comparison of adjectives

Comparison of Adjectives

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับเรื่องของ Comparison of Adjectives ซึ่งจะคืออะไรและเอาไปใช้อะไรได้บ้าง เราลองไปดูกันเลยครับ

สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ การบวกเมทริกซ์ เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน เช่น 1.)  2.)    การลบเมทริกซ์ การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้