การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

การหารเศษส่วนและจำนวนคละ

เทคนิคการหารเศษส่วนและจำนวนคละ

บทความที่แล้วเราได้พูดถึงหลักการคูณเศษส่วนและจำนวนคละไปแล้ว บทความนี้จะเป็นเรื่องต่อยอดจากการคูณก็คือเรื่องการหารเศษส่วนและจำนวนคละ ถ้าใครอ่านบทความการคูณเศษส่วนและจำนวนคละเข้าใจแล้วรับรองว่าเรื่องนี้จะยิ่งง่ายมากกว่าเดิมแน่นอน เพราะต้องใช้เรื่องการคูณเศษส่วนและจำนวนคละในการคำนวณหาคำตอบเช่นกัน สิ่งที่บทความนี้จะมอบให้กับน้อง ๆก็คือขั้นตอนการแสดงวิธีทำที่เห็นภาพและเข้าใจง่ายเหมือนกันบทความที่แล้วมา

เรียนรู้สำนวนไทยที่เกี่ยวกับสัตว์

จากที่เราได้เรียนรู้ในเรื่องของสำนวนกันมามากแล้ว ไม่ว่าจะเป็นความหมาย ที่มา ลักษณะ ความสำคัญ หรือคุณค่า รวมไปถึงตัวอย่างสำนวนไทยน่ารู้ที่เราได้ยกมาแล้วอธิบายความหมาย แต่น้อง ๆ สังเกตไหมคะว่า สำนวนไทยมีหลายสำนวนเลยที่มักจะเกี่ยวข้องกับสัตว์ สำนวนไทยที่เกี่ยวกับสัตว์ ไม่ได้มีขึ้นเพื่อกล่าวถึงสัตว์ตรง ๆ แต่เป็นการนำสัตว์มาเปรียบเทียบกับคน บทเรียนในวันนี้ จะพาน้อง ๆ ไปเรียนรู้กันว่าสัตว์แต่ละชนิดแทนพฤติกรรมไหนของคน และจะมีสำนวนใดบ้างที่เราควรรู้ ถ้าพร้อมแล้ว ไปดูกันเลยค่ะ   สำนวนไทยที่เกี่ยวกับสัตว์  

should have

I Should Have Done It! โครงสร้างประโยค “รู้งี้”

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับหลักไวยากรณ์เล็กๆ น้อยๆ ที่ได้ใช้ประโยชน์มากๆ นั่นคือเรื่องการใช้ should have + past participle นั่นเองครับ จะเป็นอย่างไรลองไปดูกันเลยครับ

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1