การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ตัวอย่างโจทย์ปัญหา + – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะยกตัวอย่างของโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละพร้อมทั้งวิธีวิเคราะห์โจทย์ การแก้โจทย์ปัญหาและหาคำตอบออกมาได้อย่างสมเหตุสมผล หลังจากอ่านบทความนี้จบน้อง ๆ จะสามารถทำความเข้าใจกับโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละและแก้โจทย์ได้ดียิ่งขึ้น

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

ความเป็นมาของบทละครเรื่องรามเกียรติ์ ตอน นารายณ์ปราบนนทก

บทละครเรื่องรามเกียรติ์ เป็นวรรณคดีที่สำคัญและมีอิทธิพลต่อความคิดความเชื่อของคนไทยมาอย่างยาวนาน น้อง ๆ หลายคนก็คงจะรู้จักและเคยเห็นผ่านตากันมาบ้างตามสื่อต่าง ๆ แต่ทราบไหมคะว่าวรรณคดีเรื่องนี้มีที่มาอย่างไร และทำไมถึงมาเป็นบทละคร มีความสำคัญอย่างไรจึงมาอยู่ในบทเรียนวิชาภาษาไทย เราไปดูพร้อม ๆ กันเลยค่ะ   ความเป็นมาของบทละครเรื่องรามเกียรติ์     รามเกียรติ์ เป็นวรรณคดีที่ได้รับอิทธิพลและมีเค้าโครงเรื่องมาจากมหากาพย์รามายณะที่ฤๅษีวาลมีกิ ชาวอินเดียเป็นคนแต่งขึ้นเป็นภาษาสันสกฤต แม้จะไม่ปรากฏปีที่วรรณคดีเรื่องดังกล่าวเข้ามาเผยแผ่ในไทยอย่างแน่ชัด แต่ด้วยจากหลักฐานทางประวัติศาสตร์ก็ทำให้นักวิชาการคาดการณ์ว่าเป็นช่วงสมัยอยุธยา และในสมัยกรุงธนบุรี พระเจ้าตากสินได้ทรงประพันธ์เพื่อให้ละครหลวงเล่น ก่อนที่ต่อมาสมเด็จพระพุทธยอดฟ้าจุฬาโลก รัชกาลที่

NokAcademy_บอกเวลาเป็นภาษาอังกฤษ

เรียนรู้เกี่ยวกับการบอกเวลา

Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคน วันนี้เราจะไป เรียนรู้เกี่ยวกับการบอกเวลา กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย Let’s go! การแบ่งประเภท     ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้  

หลักการใช้คำราชาศัพท์ รู้ไว้ไม่สับสน

เมื่อได้รู้ความหมาย ที่มาและความสำคัญของคำราชาศัพท์ รวมถึงคำศัพท์หมวดร่างกายไปแล้ว น้อง ๆ ก็คงจะสงสัยใช่ไหมคะ ว่าหลักการใช้คำราชาศัพท์ มีอะไรบ้าง และใช้อย่างไร ต้องใช้แบบไหนถึงจะถูก บทเรียนในวันนี้เราจะมาเรียนรู้หลักการใช้คำราชาศัพท์ที่ถูกต้องกันค่ะ ไปเรียนรู้พร้อม ๆ กันแลย   หลักการใช้คำราชาศัพท์ กับราชวงศ์ไทย     ลำดับพระอิสริยศักดิ์ของพระบรมราชวงศ์สามารถลำดับอย่างคร่าว ๆ ได้ดังนี้ พระบาทสมเด็จพระเจ้าอยู่หัว, สมเด็จพระบรมราชินีนาถ สมเด็จพระราชินี,

เทคนิคอ่านจับใจความ Skim and Scan

เทคนิคอ่านเร็วจับใจความในภาษาอังกฤษ (Skimming and Scanning)

เคยเป็นมั้ยว่าเจอบทความภาษาอังกฤษทีไร ปวดหัวทุกที ทั้งเยอะและยาว เมื่อไหร่จะอ่านจบกว่าจะตอบได้หมดเวลากันพอดี สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดูเทคนิคการอ่านเพื่อจับใจความสำคัญ โดยใช้วิธีการที่เรียกว่า อ่านแบบเร็ว (จ๊วด …) หรือ Speed Reading (ภาษาอีสาน จ๊วด แปลว่า เร็วเหมือนเสียงปล่อยจรวด) ถ้าเราสามารถอ่านได้เร็วเหมือนจรวดคงเป็นสิ่งที่ดีมาก ไปจ๊วดกันเลยกับเทคนิคอ่านเร็วทุกคน ก่อนอื่นจะต้องรู้จักกับประเภทของ Speed Reading กันก่อนค่ะ การอ่านแบบจับใจความสำคัญส่วนใหญ่แล้วเราจะเจอ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1