กราฟของความสัมพันธ์เชิงเส้น

กราฟของความสัมพันธ์เชิงเส้น ปก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐

คู่อันดับ

กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

คู่อันดับ  เขียนแทนด้วยสัญลักษณ์ (a, b)  อ่านว่า  คู่อันดับเอบี

เรียก    a    ว่าสมาชิกตัวที่หนึ่งหรือสมาชิกตัวหน้า  ซึ่งเป็นสมาชิกกลุ่มที่ 1

เรียก    b    ว่าสมาชิกตัวที่สองหรือสมาชิกตัวหลัง  ซึ่งเป็นสมาชิกของกลุ่มที่ 2

ตัวอย่างที่ 1   พิจารณาตารางต่อไปนี้

จำนวนน้ำตาล (ถุง) 1 2 3 4 5
ราคา (บาท) 15 30 45 60 75

เขียนคู่อันดับ  แสดงการอ่าน  และบอกความหมาย

(1, 15)   อ่านว่า   คู่อันดับหนึ่ง สิบห้า                    หมายความว่า   น้ำตาล 1 ถุง   ราคา 15 บาท

(2, 30)   อ่านว่า   คู่อันดับสอง สามสิบ                  หมายความว่า   น้ำตาล 2 ถุง   ราคา 30 บาท

(3, 45)   อ่านว่า   คู่อันดับสาม สี่สิบห้า                 หมายความว่า   น้ำตาล 3 ถุง   ราคา 45 บาท

(4, 60)   อ่านว่า   คู่อันดับสี่ หกสิบ                       หมายความว่า   น้ำตาล 4 ถุง   ราคา 60 บาท

(5, 75)   อ่านว่า   คู่อันดับห้า เจ็ดสิบห้า                หมายความว่า   น้ำตาล 5 ถุง   ราคา 75 บาท

สมบัติของคู่อันดับ

  1. (a, b) ≠  (b, a)   ยกเว้น  a = b
  2. (a, b) =  (c, d)   ก็ต่อเมื่อ  a = c  และ  b = d

กราฟของคู่อันดับ

กราฟของคู่อันดับ  เป็นกราฟที่แสดงความสัมพันธ์ระหว่างสมาชิก 2 กลุ่ม

เขียนเส้นจำนวนในแนวนอนและแนวตั้ง  ให้ตัดกันเป็นมุมฉากที่จุดซึ่งแทนศูนย์ (0)  ดังต่อไปนี้

กราฟของความสัมพันธ์เชิงเส้น

จุดที่เส้นจำนวนทั้งสองตัดกันเรียกว่า  จุดกำเนิด  นิยมแทนด้วย 0

เส้นจำนวนในแนวนอนเรียกว่า  แกนนอน หรือ แกน X และเส้นจำนวนในแนวตั้งเรียกว่า แกนตั้ง หรือ แกน Y  

แกน X และ แกน Y  อยู่บนระนาบเดียวกัน  และแบ่งระนาบออกเป็น 4 ส่วน  เรียกแต่ละส่วนว่า จตุภาค

จตุภาคที่ 1     ระยะตามแกน X และ แกน Y เป็นจำนวนบวกทั้งคู่

จตุภาคที่ 2     ระยะตามแกน X เป็นจำนวนลบ  และระยะตามแกน Y เป็นจำนวนบวก

จตุภาคที่ 3     ระยะตามแกน X และ แกน Y เป็นจำนวนลบทั้งคู่

จตุภาคที่ 4     ระยะตามแกน X เป็นจำนวนบวก  และระยะตามแกน Y เป็นจำนวนลบ

ตัวอย่างที่ 2  จงลงจุดต่อไปนี้ บนระนาบ  X, Y

1.  A(-2, 1), B(3, -5), C(-2, 4), D(0,3), E(5, -1) และ F(-3, -3)  

กราฟของคู่อันดับ 2

2.  P(0, 0), Q(0, -5), R(-3, 0), S(0,2), T(-4, 5) และ  V(3, -4)

กราฟของคู่อันดับ 3

ความสัมพันธ์เชิงเส้น

           ความสัมพันธ์เชิงเส้น แสดงความสัมพันธ์ของปริมาณ 2 ปริมาณ ที่มีกราฟอยู่ในแนวเส้นตรงเดียวกัน เรียกความสัมพันธ์ลักษณะเช่นนี้ว่า “ความสัมพันธ์เชิงเส้น”

  • ความสัมพันธ์เชิงเส้นเป็นความสัมพันธ์ของปริมาณสองปริมาณ ที่มีกราฟอยู่ในแนวเส้นตรงเดียวกัน
  • ความสัมพันธ์เชิงเส้นระหว่างปริมาณสองปริมาณ อาจมีกราฟอยู่ในแนวเส้นตรงเดียวกันเป็นช่วงๆ ไม่จำเป็นต้องเป็นแนวเส้นตรงเดียวกันทั้งหมดก็ได้

ตัวอย่างที่ 3  จงเขียนคู่อันดับและกราฟของคู่อันดับของความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขาย

จำนวนนมถั่วเหลือง (กล่อง) 1 2 3 4 5
ราคาขาย (บาท) 6 12 18 24 30

วิธีทำ  จากข้อมูลในตารางสามารถจับคู่ระหว่างจำนวนนมถั่วเหลืองกับราคาขายได้ 5 คู่  คือ  1 กับ 6, 2 กับ 12, 3 กับ 18, 4 กับ 24, 5 กับ 30

เขียนแสดงการจับคู่โดยใช้สัญลักษณ์ ได้ดังนี้  (1, 6),  (2, 12),  (3, 18),  (4, 24)  และ  (5, 30)

ถ้านำความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขายมาเขียนให้อยู่ในรูป (1, 6), (2, 12), (3, 18), (4, 24),  (5, 30)  เราเรียกสัญลักษณ์นี้ว่า “คู่อันดับ”  และเรียกจำนวนนมถั่วเหลืองกับราคาขายในแต่ละคู่อันดับว่า “สมาชิกของคู่อันดับ”  โดยสมาชิกตัวหน้าแทนจำนวนนมถั่วเหลืองและสมาชิกตัวหลังแทนราคาขาย  เช่น

  • (1, 6)   อ่านว่า   คู่อันดับหนึ่งหก มี 1 เป็นสมาชิกตัวหน้า และ 6 เป็นสมาชิกตัวหลัง หมายความว่า            นมถั่วเหลือง 1 กล่อง ราคา 6 บาท
  • (2, 12)   อ่านว่า   คู่อันดับสอง สิบสอง มี 2 เป็นสมาชิกตัวหน้า และ 12 เป็นสมาชิกตัวหลัง หมายความว่า  นมถั่วเหลือง 2 กล่อง ราคา 12 บาท
  • (3, 18)   อ่านว่า  คู่อันดับสามสิบแปด มี 3 เป็นสมาชิกตัวหน้า และ 18 เป็นสมาชิกตัวหลัง หมายความว่า   นมถั่วเหลือง 3 กล่อง ราคา 18 บาท
  • (4, 24)   อ่านว่า   คู่อันดับสี่ ยี่สิบสี่ มี 4 เป็นสมาชิกตัวหน้า และ 24 เป็นสมาชิกตัวหลัง  หมายความว่า   นมถั่วเหลือง 4 กล่อง ราคา 24 บาท
  • (5, 30)   อ่านว่า  คู่อันดับห้า สามสิบ มี 5 เป็นสมาชิกตัวหน้า และ 30 เป็นสมาชิกตัวหลัง หมายความว่า   นมถั่วเหลือง 5 กล่อง ราคา 30 บาท

คำถามเพิ่มเติม : คู่อันดับ (1, 6) กับ (6, 1) เหมือนกันหรือไม่ เพราะอะไร

อธิบายเพิ่มเติม : ถ้าเขียนความสัมพันธ์ของจำนวนนมถั่วเหลืองกับราคาขายเป็น (6, 1) จะได้ว่า  นมถั่วเหลือง 6 กล่อง ราคา 1 บาท พบว่า   ความหมายของคู่อันดับดังกล่าวจะเปลี่ยนไปจากเดิม  ดังนั้นลำดับของสมาชิกแต่ละตัวในคู่อันดับมีความสำคัญในเงื่อนไขหรือข้อตกลงนั้น

เขียนกราฟของคู่อันดับ ได้ดังนี้

กราฟของคู่อันดับ

ตัวอย่างที่ 4  จงเขียนกราฟแสดงความสัมพันธ์ระหว่างจำนวนมะละกอ  และราคาขายจากตารางที่กำหนดให้

จำนวนมะละกอ  (ผล) 1 2 3 4 5 6 7
ราคาขาย  (บาท) 10 20 30 40 50 60 70

วิธีทำ  จากตารางเขียนคู่อันดับแสดงความสัมพันธ์ระหว่างจำนวนมะละกอกับราคาขาย  ได้ดังนี้

(1,10),  (2,20),  (3,30), (4,40), (5,50), (6,60) และ (7,70)   

เมื่อกำหนดให้แกน  X  แสดงจำนวนมะละกอ  และแกน Y  แสดงราคาขาย  จะได้กราฟแสดงความสัมพันธ์ระหว่างมะละกอกับราคาขาย  ได้ดังนี้

กราฟของคู่อันดับ 4

 

หมายเหตุ : เนื่องจากจำนวนมะละกอเป็นจำนวนบวกกราฟแสดงความสัมพันธ์จึงอยู่ในจตุภาคที่  1  เท่านั้น 

ตัวอย่างที่ 5  กำหนดกราฟแสดงจำนวนมังคุดที่ชาวสวนเก็บส่งขายได้ตั้งแต่วันที่ 1  ถึงวันที่  10  ของเดือนพฤษภาคม

กราฟของคู่อันดับ 5

 

จงตอบคำถามต่อไปนี้

  1. วันที่ 1  เก็บมังคุดส่งขายได้เท่าไร

        ตอบ  100  ผล

  1. วันที่เท่าไรเก็บมังคุดส่งขายได้มากที่สุด เก็บได้เท่าไร

        ตอบ  วันที่  6  เก็บมังคุดได้  900  ผล

  1. วันที่เท่าไรบ้างที่เก็บมังคุดได้เป็นจำนวนเท่ากัน และเก็บได้เท่าไรบ้าง

        ตอบ  วันที่  3  กับ  9  เก็บได้  400  ผล  และวันที่  5  กับวันที่  8 เก็บได้  700  ผล

  1. วันที่เท่าไรที่จำนวนมังคุดที่เก็บส่งขายเริ่มมีจำนวนลดลง

        ตอบ  วันที่  7

  1. จำนวนมังคุดที่เก็บส่งขายในรอบ 10  วันมีการเปลี่ยนแแปลงอย่างไร

       ตอบ  จำนวนมังคุดที่เก็บส่งขายได้ใน  6  วันแรก  เพิ่มขึ้นโดยตลอด  และมีจำนวนมากที่สุดถึง  900  ผล  ในวันที่  6  หลังจากนั้นมีจำนวนลดลงเรื่อย  ๆ  จนถึงวันที่  10

วิดีโอ กราฟของความสัมพันธ์เชิงเส้น

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สำนวนนี้มีที่มา เรียนรู้ความหมายและที่มาของ สำนวนไทย

สำนวนไทย เป็นสิ่งที่คนรุ่นก่อนใช้ความคิดและประสบการณ์สั่งสอนลูกหลาน เกิดเป็นมรดกทางวัฒนธรรมด้านคติธรรมที่แสดงถึงความรุ่งเรืองทางภาษาของประเทศไทย บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้สำนวนไทยที่เห็นกันบ่อย ๆ แต่หลายคนอาจจะใช้ไม่ถูกต้อง ไม่รู้ความหมายที่ถูกต้อง พร้อมทั้งเรียนรู้ที่มาของสำนวนด้วย ถ้าพร้อมแล้วเราไปเรียนรู้กันเลยค่ะ   สำนวนไทย   สำนวนไทย หมายถึง ถ้อยคำที่คมคายซึ่งเป็นถ้อยคำที่ใช้พูดสื่อสารกันโดยมีความหมายที่กว้างและลึกซึ้ง เป็นความหมายโดยนัย ไม่ได้แปลตรงตัวเพื่อใช้เป็นคำพูดในเชิงสั่งสอน เตือนสติ มุ่งสอนใจหรือชี้แนะให้ประพฤติปฏิบัติตาม   ที่มาของสำนวนไทย   สำนวนไทยมีมูลเหตุและที่มาของการเกิดหลายประการ

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

การใช้ประโยคเกี่ยวกับอาชีพ สัญชาติ ข้อมูลส่วนบุคคล และอาชีพที่อยากทำในอนาคต

สวัสดีนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ ประโยคเกี่ยวกับอาชีพ สัญชาติ ข้อมูลส่วนบุคคล และอาชีพที่อยากทำในอนาคต พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   อาชีพ (Occupation)     ตารางคำศัพท์ภาษาอังกฤษเกี่ยวกับอาชีพ คำศัพท์ แปล engineer วิศวกร actor นักแสดง YouTuber นักยูทูบเบอร์ Gamer

ทฤษฎีบทพีทาโกรัส

ทฤษฎีบทพีทาโกรัส

บทความนี้น้องๆจะได้เรียนรู้กี่ยวกับการพิสูจน์ที่ทฤษฎีบทพีทาโกรัส ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวมของกำลังสองของอีกสองด้านที่เหลือในแง่ของพื้นที่

การใช้ Why and because + want + infinitive

การใช้ Why and because + want + infinitive เกริ่นนำเกริ่นใจ กลับมาอีกครั้ง กับนักเขียนเจ้าเก่าคนเดิม คนที่พร้อมจะพาทุกคนเข้าสู่โลกของการเรียนรู้และความหัวปวดด้วยภาษาที่สองอย่างภาษาอังกฤษ เช้าที่สดใสแบบนี้จะมีอะไรดีไปกว่าการได้มานั่งเขียนเรื่องราวดี ๆ เพื่อแบ่งปันให้กับผู้อื่นอีกละ จริงมั้ย? คำถามคือ ทำไมต้องมาเขียนอะไรแบบนี้ทุกเช้าด้วยละ? สงสัยใช่มั้ยละ? นั่นก็เพราะว่า คนเขียนนั้นรักในการเขียนและอยากจะแบ่งปันความรู้ให้กับคนอ่านทุกคนยังไงละ Easy เลย แค่นั้นเลย คนบนโลกจะเข้าใจกันมากหากเรามีเหตุผลในสิ่งที่ทำ

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1