ดีเทอร์มิแนนต์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ \inline \left | A \right |

โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก

**ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 2×2

ดีเทอร์มิแนนต์

หลักการจำคือ คูณลง ลบ คูณขึ้น

เช่น

ดีเทอร์มิแนนต์

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 3×3

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ 3×3 จะซซับซ้อนกว่า 2×2 นิดหน่อย แต่ยังใช้หลักการเดิมคือ คูณลง ลบ คูณขึ้น และสิ่งที่เพิ่มมาก็คือ การเพิ่มจำนวนหลักเข้าไปอีก 2 หลัก ซึ่งหลักที่เพิ่มนั้นก็คือค่าของ 2 หลักแรกนั่นเอง

ดีเทอร์มิแนนต์

 

ตัวอย่างเมทริกซ์ขนาด 3×3

ดีเทอร์มิแนนต์

 

สมบัติเกี่ยวกับ ดีเทอร์มิแนนต์

ให้ A, B เป็นเมทริกซ์ขนาด n×n

1.) \inline \mathrm{det(A)=det(A^t)}  โดยที่ \inline \mathrm{A^t} คือ เมทริกซ์สลับเปลี่ยน

2.) ถ้า สมาชิกแถวใดแถวหนึ่ง (หรือหลักใดหลักหนึ่ง) เป็น 0 ทุกตัว จะได้ว่า \inline \mathrm{det(A)=0}

เช่น

ดีเทอร์มิแนนต์

3.) ถ้า B คือเมทริกซ์ที่เกิดจากการสลับแถว (หรือหลัก) ของ A เพียงคู่เดียว จะได้ว่า \inline \mathrm{det(B)=-det(A)}

เช่น

ดีเทอร์มิแนนต์

4.) ถ้า B เกิดจากการคูณค่าคงตัว c ในสมาชิกแถวใดแถวหนึ่ง (หลักใดหลักหนึ่ง) ของ A จะได้ว่า \inline \mathrm{det(B)=cdet(A)}

เช่น

5.) \inline \mathrm{det(AB)=det(A)det(B)}

6.) \inline \mathrm{det(I_n)=1}  และ  \mathrm{det(\underbar{0})=0}

7.) \mathrm{det(A^n)=(det(A))^n}

เช่น

8.)  A เป็นเมทริกซ์เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)=0}

9.) A เป็ยเมทริกซ์ไม่เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)\neq 0}

10.) ถ้า A เป็นเมทริกซ์ไม่เอกฐาน แล้วจะได้ว่า \inline \mathrm{det(A^{-1})=\frac{1}{det(A)}}

11.) ถ้า c เป็นค่าคงตัว จะได้ว่า \mathrm{det(cA)=c^ndet(A)}   (n คือมิติของเมทริกซ์ A)

เช่น

ดีเทอร์มิแนนต์

12.) สามเหลี่ยมล่าง และสามเหลี่ยมบน 

ถ้า สมาชิกที่อยู่ใต้เส้นทะแยงมุมหลัก (หรือบนเส้นทะแยงมุมหลัก) เป็น 0 ทุกตัว จะได้ว่า ค่าดีเทอร์มิแนนต์จะเท่ากับ ผลคูณของสมาชิกเส้นทะแยงมุมหลัก

เช่น

ดีเทอร์มิแนนต์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

M5 Past Passive

Passive Voice ในอดีต

  Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive

_ม2 Present Continuous Tense Profile

Present Continuous Tense

สวัสดีนักเรียนชั้นม.3 ที่น่ารักทุกคนค่า วันนี้เราจะไปเรียนรู้กันเรื่อง ” Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และข้อสอบวัดความเข้าใจหลังเรียนแบบปังๆกันจร้า หากพร้อมแล้วก็ไปลุยกันเลย เริ่มกับการใช้ Present Continuous Tense   อธิบายสิ่งที่กำลังเกิดขึ้นอยู่ในขณะนั้น เช่น Danniel is playing a football at the moment.

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

ขั้นตอนของการแก้โจทย์ปัญหา บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย แต่ก่อนที่น้องๆจะเรียนเรื่องนี้อย่าลืมทบทวน การแก้สมการเชิงเส้นตัวแปรเดียว กันก่อนนะคะ ถ้าน้องๆพร้อมแล้วเรามาศึกษาขั้นตอนของการแก้โจทย์ปัญหาเกี่ยวกับสมการ ดังนี้               ขั้นที่ 1 วิเคราะห์โจทย์ว่ากำหนดอะไรให้บ้าง และให้หาอะไร               ขั้นที่ 2 กำหนดตัวแปรแทนสิ่งที่โจทย์ให้หาหรือแทนสิ่งที่เกี่ยวข้องกับสิ่งที่โจทย์ให้หา               ขั้นที่ 3 เขียนสมการตามเงื่อนไขของโจทย์               ขั้นที่

ที่มาและเรื่องย่อของวรรณคดียิ่งใหญ่ตลอดกาล รามเกียรติ์ ตอน ศึกไมยราพ

นับตั้งแต่สมัยกรุงศรีอยุธยา มีผู้นำรามเกียรติ์มาแต่งมากมายหลายฉบับ ด้วยเนื้อหาที่เข้มข้นและสนุกเกินบรรยาย แต่ฉบับที่สมบูรณ์ที่สุดคือฉบับที่ประพันธ์โดยสมเด็จพระพุทธยอดฟ้าจุฬาโลก หรือก็คือรัชกาลที่ 1 นั่นเองค่ะ รามเกียรติ์ฉบับนี้มีความพิเศษและมีจุดประสงค์ที่ต่างจากฉบับก่อนหน้า บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงพระปรีชาสามารถของรัชกาลที่ 1 ผ่านความเป็นมาของวรรณคดีรวมไปถึงเรื่องย่อในตอนสำคัญอย่างตอน ศึกไมยราพ กันค่ะ ไปดูพร้อมกันเลยค่ะว่า รามเกียรติ์ ตอน ศึกไมยราพ จะสนุกแค่ไหน   ประวัติความเป็นมา     รามเกียรติ์

01NokAcademy_Question Tag Profile

การใช้โครงสร้างประโยค Question Tags (ปัจจุบัน)

สวัสดีค่ะนักเรียนชั้นป. 6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อเรื่อง การใช้โครงสร้างประโยค Question Tags ในรูปแบบปัจจุบัน โดยที่เราจะเจอกลุ่มประโยคในลักษณะนี้ร่วมกับรูปแบบโครงสร้างประโยคและกริยาที่เป็นปัจจุบัน (V. 1 and Present form) พร้อมแล้วก็ไปลุยกันเลยค่า ความหมายของ Question Tags   Question แปลว่า คำถาม ส่วนคำว่า Tag จะแปลว่า วลี

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1