รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้

นิยาม

ให้  x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 เราจะบอกว่า y เป็นรากที่ n ของ x ก็ต่อเมื่อ รากที่ n ของจำนวนจริง

 

เช่น 5 เป็นรากที่ 3 ของ 125 หรือไม่

จากที่เรารู้ว่า 5×5×5 = 125 ดังนั้น เราจึงสรุปได้ว่า 5 เป็นรากที่ 3 ของ 125 หรือสามารถพูดได้อีกแบบคือ รากที่ 3 ของ 125 คือ 5 เขียนให้สั้นลงได้เป็น \sqrt[3]{125}=5 นั่นเอง

ในกรณีที่ x = 0 จะได้ว่า \sqrt[n]{x} = 0

แต่ถ้า x > 0 จะได้ว่า n จะเป็นเลขคู่หรือคี่ก็ได้

**เมื่อ n เป็นจำนวนเต็มคู่ จะได้ว่า รากที่ n ของ x เป็นได้ทั้งจำนวนบวกและจำนวนลบ

เช่น -2, 2 เป็นรากที่ 4 ของ 16 เพราะ รากที่ n ของจำนวนจริง และ รากที่ n ของจำนวนจริง

 

ในกรณีที่ x < 0 ในระบบจำนวนจริง n ควรจะเป็นเลขคี่

สมมติว่า n เป็นเลขคู่

\sqrt[4]{-16}  จะเห็นว่าไม่มีจำนวนจริงใดยกกำลัง 4 แล้วได้ -16 เพราะปกติแล้วยกกำลังคู่ต้องได้จำนวนบวก ดังนั้นจึงไม่มีคำตอบในระบบจำนวนจริง (แต่มีคำตอบในจำนวนเชิงซ้อน ซึ่งน้องๆจะได้เรียนในบทจำนวนเชิงซ้อน)

สมมติว่า n เป็นเลขคี่

\sqrt[3]{-125} = -5 เพราะ (-5)×(-5)×(-5) = (-5)³ = -125

จำนวนจริงในรูปกรณฑ์

กรณฑ์ หรือค่าหลักของราก มีนิยามดังนี้

นิยาม

ให้ x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 จะบอกว่า y เป็นค่าหลักของรากที่ n ของ x ก็ต่อเมื่อ

  1. y เป็นรากที่ n ของ x
  2. xy ≥ 0

จากนิยามจะเห็นว่า ถ้า y จะเป็นค่าหลักของรากที่ n ของ x ได้ จะได้ต้องมีคูณสมบัติครบทั้งสองข้อ มีข้อใดข้อหนึ่งไม่ได้

และเราจะเขียน \sqrt[n]{x} แทนค่าหลักของรากที่ n ของ x อ่านได้อีกอย่างว่า กรณฑ์ที่ n ของ x

ตัวอย่าง

-3 เป็นกรณฑ์ที่ 3 ของ -27 เพราะว่า

  1. -3 เป็นรากที่ 3 ของ 3 (เนื่องจาก รากที่ n ของจำนวนจริง)
  2. (-27)(-3) = 81 ≥ 0

-2 เป็นรากที่ 4 ของ 16 แต่ -2 นั้นไม่เป็นกรณฑ์ที่ 4 ของ 16 เพราะว่า (-2)(16) = -32 < 0

สมบัติที่ควรรู้

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็มที่มากกว่า 1

  1. จำนวนจริงในรูปกรณฑ์
  2. \sqrt[n]{1}=1
  3. \sqrt[n]{0}=0
  4. (\sqrt[n]{a})^n=a
  5. \sqrt[n]{ab}=\sqrt[n]{a}\times \sqrt[n]{b}
  6. \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},b\neq 0
  7. \sqrt[n]{a^{n}} = a เมื่อ n เป็นจำนวนเต็มคี่   เช่น  \sqrt[3]{(-3)^3} = -3 , \sqrt[5]{2^{5}}=2
  8. \sqrt[n]{a^{n}} = \left | a \right | เมื่อ n เป็นจำนวนเต็มคู่   เช่น \sqrt[4]{2^{4}}= \left | 2 \right |=2 , \sqrt[4]{(-3)^4}=\left | -3 \right |=3

 

สูตรลัดในการหารากที่ 2

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง

 

ตัวอย่าง

1.)     รากที่ n ของจำนวนจริง

 

2.)    \sqrt[3]{4\sqrt[3]{4\sqrt[3]{4...}}}= \sqrt[3-1]{4}=\sqrt[2]{4}=2

 

การหาผลบวก และผลต่างของจำนวนจริงในรูปกรณฑ์

วิธีการหาคือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. เลขข้างในต้องเหมือนกันด้วย โดยอาจจะทำให้เป็นจำนวนเฉพาะหรืออาจจะทำให้เป็นจำนวนที่ต่ำที่สุด

ตัวอย่าง

1.) 3\sqrt{8}-\sqrt{2}+\sqrt{32}

รากที่ n ของจำนวนจริง

 

การหาผลคูณและผลหารของจำนวนจริงในรูปกรณฑ์

 

หลักการก็คือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. ถ้าอันดับของกรณฑ์ไม่เหมือนกันจะต้องทำให้อันดับเหมือนกันก่อน โดยใช้สมบัติ   

 

ตัวอย่าง 

จะเขียน \sqrt[3]{8}\sqrt{6} ให้อยู่ในรูปอย่างง่าย

รากที่ n ของจำนวนจริง

 

 

วิดีโอ รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

NokAcademy_Articles E5

Articles: a/an/the

สวัสดีค่ะนักเรียนชั้น ป. 6 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable Nouns )

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน มีอะไรบ้างในภาษาไทย

  คำที่ยืมมาจากภาษาญี่ปุ่นและจีน น้อง ๆ ทราบไหมคะว่ามีคำไหนบ้าง ทั้งสองประเทศนี้คือประเทศในแทบเอเชียเหมือนกัน แต่ก็ไม่ได้อยู่ใกล้เรานัก แล้วทำไมถึงมีคำจากภาษาญี่ปุ่นและจีนเข้ามาปะปนอยู่ในชีวิตประจำได้ บทเรียนภาษาไทยเรื่องลักษณะคำที่ยืมมาจากภาษาญี่ปุ่นและจีนในวันนี้จะพาน้อง ๆ ไปศึกษาและทำความเข้าใจเกี่ยวกับคำศัพท์ต่าง ๆ ที่ยืมมา จะมีคำไหนบ้าง ไปดูพร้อมกันเลยค่ะ   ที่มาของภาษาญี่ปุ่นและจีนในภาษาไทย     คำที่ยืมมาจากญี่ปุ่นและจีน มีด้วยกันมากมายหลายคำเลยค่ะ บางคำ อาจจะไม่ทันสังเกตด้วยซ้ำว่าเป็นภาษาญี่ปุ่นกับจีน ไม่ใช่คำภาษาไทย เพราะสองประเทศในเอเชียนี้เข้ามามีอิทธิพลกับประเทศมาตั้งแต่โบราณ

การบรรยายลักษณะ และ ความรู้สึก โดยใช้คำคุณศัพท์

การบรรยายลักษณะและความรู้สึก โดยใช้คำคุณศัพท์ Adjective

ทบทวนความหมายและหน้าที่ของคำคุณศัพท์   คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่ นั่นเองค่า นอกจากนี้ยังทำหน้าที่ขยายในที่นี้เพื่อบอกให้รู้ว่าคำนามหรือสรรพนามเหล่านั้นมีลักษณะยังไง  และในบทนี้ครูจะพาไปดูการใช้คำคุณศัพท์บอกลักษณะและความรู้สึก (Descriptive Adjective) กันนะคะ ไปลุยกันเลย   การใช้คำคุณศัพท์ (Adjective)

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1