รูปแบบของประพจน์ที่สมมูลกัน

การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ประพจน์ที่สมมูล

ประพจน์ที่สมมูลกัน คือ ประพจน์ที่มีค่าความจริงเหมือนกันทุกกรณี เขียนแทนด้วยสัญลักษณ์ “≡”

แล้วค่าความจริงเหมือนกันทุกกรณี คือยังไง?? เรามาลองพิจารณาค่าความจริงของประพจน์ p→q และ ∼q→∼p จากตารางค่าความจริงกันค่ะ

จากตาราง จะเห็นว่า p→q และ ∼q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้นเราจะได้ว่า p→q และ ∼q→∼p เป็นประพจน์ที่สมมูลกัน เขียนแทนด้วย p→q ≡ ∼q→∼p

หลังจากที่เรารู้แล้วว่าประพจน์ที่สมมูลกันคืออะไร ต่อไปเรามาดูตัวอย่างของประพจน์ที่สมมูลกันค่ะ (ควรจำให้ได้ แล้วจะเป็นประโยชน์มากๆ)

1.) p∧p≡ p

2.) p∨p≡p

3.) (p∨q)∨r ≡ p∨(q∨r) (เปลี่ยนกลุ่ม)

4.) (p∧q)∧r ≡ p∧(q∧r) (เปลี่ยนกลุ่ม)

5.) p∨q ≡ q∨p (สลับที่)

6.) p∧q ≡ p∧q (สลับที่)

7.) p∨(q∧r) ≡ (p∨q)∧(p∨r) (แจกแจง)

8.) p∧(q∨r) ≡ (p∧q)∨(p∧r) (แจกแจง)

9.) ∼(p∨q) ≡ ∼p∧∼q

10.) ∼(p∧q) ≡ ∼p∨∼q

11.) ∼p→q ≡ p∨∼q **

12.) p→q ≡ ∼p∨q **

13.) p→q ≡ ∼q→∼p

14.) p↔q ≡ (p→q)∧(p→q) ≡ (∼p∨q)∧(∼p∨q)

** เปลี่ยน “ถ้า…แล้ว…” เป็น “หรือ” ง่ายๆ ด้วยประโยค “หน้าเปลี่ยนไป “หรือ” หลังเฉยๆ วิธีนี้ใช้ได้ทั้งไปและกลับ

เช่น

p→q จะเปลี่ยนเป็น “หรือ” : หน้าเปลี่ยนไป คือ ประพจน์ข้างหน้าเปลี่ยนเป็นนิเสธ จะได้ ∼p “หรือ” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p∨q

p∨q จะเปลี่ยนเป็น “ถ้า…แล้ว…” : หน้าเปลี่ยนไป คือ ประพจน์ p เปลี่ยนเป็น นิเสธของ p จะได้ ∼p “แล้ว” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p→q

เราสามารถตรวจสอบว่าประพจน์สมมูลกันหรือไม่ด้วยการสร้างตารางค่าความจริง หรืออาจจะใช้ตัวอย่างการสมมูลข้างต้นมาช่วยตรวจสอบก็ได้(ใช้สูตร)

**การใช้สูตร เราจะทำให้ตัวเชื่อมเหมือนกันและตำแหน่งเดียวกัน เพื่อจะได้สรุปได้ว่าประพจน์ทั้งสองสมมูลกันหรือไม่

เช่น จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ p→∼q กับ q→∼p

วิธีที่ 1 สร้างตารางค่าความจริงได้ ดังนี้

จากตารางค่าความจริง จะเห็นว่า ค่าความจริงของ p→∼q กับ q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้น p→∼q กับ q→∼p สมมูลกัน

วิธีที่2 ใช้สูตร เราจะสลับ q ให้มาอยู่ข้างหน้า แต่ “→” ไม่สามารถสลับที่ได้ต้องเปลี่ยนให้เป็นตัวเชื่อมที่สลับที่ได้แล้วค่อยเปลี่ยนกลับมาเป็น “→”

ดังนั้น จะได้ว่า p→∼q กับ q→∼p สมมูลกัน

ลองมาดูอีก 1 ตัวอย่างค่ะ

จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ ∼p∨∼q กับ ∼p→q

วิธีที่ 1 สร้างตารางค่าความจริง

จากตารางจะเห็นว่า ค่าความจริงของ ∼p∨∼q กับ ∼p→q ต่างกันบางกรณี ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

วิธีที่ 2 ใช้สูตร เราจะทำให้ ∼p∨∼q อยู่ในรูป “ถ้า…แล้ว…”

ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

 

น้องๆลองสังเกตดู จะเห็นว่าการใช้ตารางนั้นยุ่งยากและค่อนข้างเสียเวลา

ดังนั้น น้องๆควรหมั่นฝึกฝนทำแบบฝึกหัดการตรวจสอบการสมมูลโดยวิธีใช้สูตร เพื่อจะได้ทำอย่างคล่องแคล่ว แม่นยำ และรวดเร็ว

 

ตัวอย่าง

เนื่องจากการตรวจสอบโดยใช้ตารางค่าความจริงเป็นวิธีที่ไม่ได้มีอะไรยาก ตัวอย่างต่อไปนี้เราจึงจะใช้วิธีใช้สูตร เพื่อให้น้องๆเข้าใจมากยิ่งขึ้นค่ะ

จงตรวจสอบว่าประพจน์ต่อไปนี้สมมูลกันหรือไม่

1.) ∼(p↔q) กับ ∼p↔∼q

วิธีทำ

ดังนั้น ∼(p↔q) กับ ∼p↔∼q ไม่สมมูลกัน

2.) p→(q→r) กับ (p∧q)→r

วิธีทำ

ดังนั้น p→(q→r) กับ (p∧q)→r สมมูลกัน

3.) ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r)

วิธีทำ

ดังนั้น ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r) สมมูลกัน

 

ไม่มีใครเข้าใจตั้งแต่ครั้งแรกที่เรียน ถ้าน้องเปิดใจให้วิชาคณิตศาสตร์และขยันทำโจทย์ คณิตศาสตร์ก็เป็นอีกหนึ่งวิชาที่สนุก สู้ๆนะคะ❤️❤️

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กราฟของความสัมพันธ์เชิงเส้น ปก

กราฟของความสัมพันธ์เชิงเส้น

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐ คู่อันดับ กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

Life is Simple: ทำความรู้จัก Present Simple Tense

เรื่อง Tense (กาล) ในภาษาอังกฤษเป็นเรื่องที่สำคัญมากๆ อีกเรื่องหนึ่ง และ Tense ที่เป็นพื้นฐานสุดๆ และน้องๆ จะพบเจอบ่อยที่สุดก็คือ Present Simple นั่นเอง วันนี้เราจะมาปูพื้นฐานและทบทวนความรู้เรื่องนี้กันครับ

การอ่านแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้การอ่านแผนภูมิรูปวงกลมรวมทั้งส่วนประกอบต่างที่ควรรู้เกี่ยวกับแผนภูมิรูปวงกลม

ภาษาถิ่นใต้

ภาษาถิ่นใต้ มรดกทางวัฒณธรรมที่ควรค่าแก่การศึกษา

ภาษาเป็นส่วนหนึ่งของวัฒนธรรม โดยสิ่งที่สะท้อนให้เห็นถึงวัฒนธรรมผ่านภาษามากที่สุด ก็คือ การมีอยู่ของภาษาถิ่น ซึ่งเป็นภาษาที่ใช้พูดติดต่อสื่อสารตามท้องถิ่นต่าง ๆ เพื่อให้คนในพื้นที่เข้าใจกัน ประเทศไทยมีทั้งหมด 6 ภาค ภาษาถิ่นที่เด่นชัดที่สุดจะแบ่งออกเป็นภาษาถิ่นภาคกลางซึ่งครอบคลุมไปถึงภาคตะวันตะวันตก อาจมีแตกต่างบ้างในเรื่องของคำศัพท์บางคำและสำเนียง ภาษาถิ่นเหนือและภาษาถิ่นอีสาน ที่ได้รับอิทธิพลจากประเทศเพื่อนบ้าน และด้วยภูมิภาคที่อยู่ใกล้กันทำให้บางคำก็ใช้ด้วยกัน และสุดท้าย ภาษาถิ่นใต้ ที่ค่อนข้างจะแตกต่างกับภาษาถิ่นอื่น ๆ แต่จะมีลักษณะ และมีคำศัพท์น่ารู้อะไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ภาษาถิ่นใต้  

ทศนิยมกับการวัด

ความสัมพันธ์ของทศนิยมกับการวัด

บทความนี้จะกล่าวถึงความสัมพันธ์ของทศนิยมกับการวัด ที่จะทำให้น้อง ๆสามารถนำไปประยุกต์ใช้กับสถาณการณ์ที่ต้องเจอในชีวิตประจำวัน จะทำให้เข้าใจหลักการและสามารถบอกค่าของการวัดที่เป็นทศนิยมได้ถูกต้อง

ตัวอย่างโจทย์ปัญหาสัดส่วน

บทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1