การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐

สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x + 3y – 15 = 0, x + y – 1 = 0, x – 2y = 3   เป็นต้น

รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร

เรียก y = ax + b ว่า รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร ซึ่งอาจเขียนในรูป y = mx + b โดยที่  a หรือ m  คือ ความชันของเส้นตรง

1. เมื่อ m > 0         กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมแหลมกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

ความชันของกราฟเส้นตรง 01

2. เมื่อ m < O        กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมป้านกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

มุมป้าน ความชันของกราฟเส้นตรง 01

3. เมื่อ m = 0            กราฟจะมีลักษณะเป็นเส้นตรงที่ขนานกับแกน X

ขนานแกน X ระบบสมการเชิงเส้นสองตัวแปร 03

รูปทั่วไปของสมการเชิงเส้นสองตัวแปร  คือ Ax + By + C = 0  เมื่อ x, y เป็นตัวแปร และ A, B, C  เป็นค่าคงตัว  โดยที่ A และ B  ไม่เท่ากับศูนย์พร้อมกัน กราฟของสมการนี้จะเป็นเส้นตรง เรียกว่า กราฟเส้นตรง

กราฟของระบบสมการเชิงเส้นสองตัวแปร

กราฟของระบบสมการจะมีลักษณะ ดังนี้

  1. กราฟของสมการทั้งสองตัดกันที่จุดจุดหนึ่ง ซึ่งจุดนั้นจะเป็นคำตอบของระบบสมการ โดยแสดงค่าของ x และ y ดังรูป

ระบบสมการเชิงเส้นสองตัวแปร 1

2. กราฟของสมการทั้งสองขนานกัน ซึ่งไม่มีคำตอบของระบบสมการ

ระบบสมการเชิงเส้นสองตัวแปร 2

  1. กราฟของสมการทั้งสองทับกันเป็นเส้นตรงเดียวกัน ซึ่งคำตอบของระบบสมการมีมากมายหลายคำตอบ โดยค่าของ x และ y ที่อยู่บนเส้นตรงนั้น

ระบบสมการเชิงเส้นสองตัวแปร 3

การใช้กราฟหาคำตอบของระบบสมการเชิงเส้นสองตัวแปร

ตัวอย่างที่ 1  จงหาคำตอบของระบบสมการต่อไปนี้โดยใช้กราฟ พร้อมทั้งระบุว่าระบบสมการนั้น มี 1 คำตอบ  มีหลายคำตอบ  หรือไม่มีคำตอบ

1)  2x + y = 11

y – x = 8

วิธีทำ    2x + y = 11   ⇒    y = 11 – 2x   

y – x = 8    ⇒    y = 8 + x 

จาก   y = 11 – 2x

แทน x = 2 จะได้  y = 11 – 2(2) = 11 – 4 = 7         (2,7)

แทน x = 0 จะได้  y = 11 – 2(0) = 11 – 0 = 11       (0,11)

แทน x = -2 จะได้  y = 11 – 2(-2) = 11 + 4 = 15    (-2,15)

จาก   y = 8 + x 

แทน x = 2 จะได้  y = 8 + 2 = 10     (2,10)

แทน x = 0 จะได้    y = 8 + 0 = 8    (0,8)

แทน x = -2 จะได้    y = 8 – 2 = 6  ⇒  (-2,6)

ระบบสมการเชิงเส้นสองตัวแปร 4

จะเห็นว่า กราฟของระบบสมการตัดกันที่จุด (1,9)

ดังนั้น คำตอบของระบบสมการมี 1 คำตอบ คือ (1,9)

2) 2y 4x   = 6

x − 2y = 4

วิธีทำ    2y 4x   = 6   ⇒    y = (6 + 4x) ÷ 2 = 3 + 2x

x − 2y = 4  ⇒    y = 4 + 2x

จาก   y = 3 + 2x

แทน x = 1 จะได้  y = 3 + 2(1) = 3 + 2 = 5      (1,5)

แทน x = 0 จะได้   y = 3 + 2(0) = 3 + 0 = 3    (0,3)

แทน x = -1 จะได้   y = 3 + 2(-1) = 3 – 2 = 1    (-1,1)

จาก   y = 4 + 2x

แทน x = 1  จะได้   y = 4 + 2(1) = 4 + 2 = 6     (1,6)

แทน x = 0  จะได้    y = 4 + 2(0) = 4 + 0 = 4     (0,4)

แทน x = -1  จะได้   y = 4 + 2(-1) = 4 – 2 = 2     (-1,2)

ระบบสมการเชิงเส้นสองตัวแปร 5

จะเห็นว่า กราฟทั้งสองขนานกัน จึงไม่มีโอกาสตัดกัน

ดังนั้น ระบบสมการไม่มีคำตอบ

3)  x – y = 5

y – x  = -5

วิธีทำ     x – y = 5  ⇒    y = x – 5

y – x  = -5   ⇒   y = -5 + x

จาก   y = x – 5

แทน x = 1 จะได้  y = 1 – 5 = -4    (1,-4)

แทน x = 0 จะได้  y = 0 – 5 = -5    (0,-5)

แทน x = -1 จะได้ y = -1 – 5 = -6    (-1,-6)

จาก  y = -5 + x

แทน x = 1  จะได้   y = -5 + 1 = -4     (1,-4)

แทน x = 0  จะได้  y = -5 + 0 = -5     (0,-5)

แทน x = -1  จะได้  y = -5 – 1 = -6     (-1,-6)

ระบบสมการเชิงเส้นสองตัวแปร 6

จะเห็นว่า กราฟทั้งสองทับกันสนิท

ดังนั้น ระบบสมการมีหลายคำตอบ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ารแก้ระบบสมการเชิงเส้นสองตัวแปรโดยใช้ อาจไม่สะดวกมากนัก เนื่องจากเสียเวลามาก และในบางครั้งคำตอบที่ได้จากกราฟ อาจพิจารณาหาคำตอบได้ยากอาจมีความคลาดเคลื่อนได้บ้าง จึงต้องอาศัยวิธีการอื่นในการแก้ระบบสมการเชิงเส้นสองตัวแปร ซึ่งจะได้เรียนในลำดับถัดไป

วิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

ป.5 การใช้ V. to be กับคำนามเอกพจน์ และพหูพจน์

การใช้กริยา V. to be กับคำนามเอกพจน์ และพหูพจน์

สวัสดีค่ะนักเรียนที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้กริยา be กับคำนามเอกพจน์ และพหูพจน์ กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! รู้จักกับ V. to be   V. to be แปลว่า เป็น อยู่ คือ หลัง verb to

การวัดปริมาตรและน้ำหนัก

การวัดปริมาตรและน้ำหนัก

ในบทความนี้เราจะได้เรียนรู้หน่วยที่ใช้ในการวัดปริมาตร และน้ำหนักที่มีการใช้กันอย่างแพร่หลาย อีกทั้งยังมีมาตรฐาน ซึ่งแต่ละหน่วยล้วนแต่มีความสัมพันธ์กัน

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1