การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ

ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

สมบัติของการคูณเลขยกกำลัง 

ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว 

1)   ax an  = am + n     (ถ้าเลขยกกำลังฐานเหมือนกันคูณกัน ให้นำเลขชี้กำลังมาบวกกัน)

2)   (am)n = amn    (นำเลขชี้กำลัง n ไปคูณกับ m )
3)   (a x b)n = an x bn   (นำเลขชี้กำลัง n ไปยกกำลังทุกตัวในวงเล็บ)

ตัวอย่างที่ 1-3

ตัวอย่างต่อไปนี้ เน้นไปที่การใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ โดยได้ยกมาหลายๆตัวอย่าง เพื่อให้สามารถหาคำตอบของเลขยกกำลังได้อย่างง่ายดาย และเลือกใช้สมบัติในการหาคำตอบได้อย่างถูกต้อง

ตัวอย่างที่ 1  จงหาค่าของจำนวนต่อไปนี้

1)      2³x 2²

2)      3³x 3²

3)      5³x 5⁹

4)    (-7)⁵ x (-7)¹²

5)    (0.02)² x (0.02)⁷

วิธีทำ 1)    2³x 2²

เนื่องจากฐานทั้ง 2 เท่ากัน นำเลขชี้กำลังมาบวกกัน จะได้

2³x 2²     =    2³⁺²

=    2⁵

ตอบ    2⁵

2)  3³x 3²

เนื่องจากฐานทั้ง 2 เท่ากัน นำเลขชี้กำลังมาบวกกัน จะได้

3³x 3²     =    3³⁺²

=    3⁵

ตอบ    3⁵

3)      5³x 5⁹

เนื่องจากฐานทั้ง 2 เท่ากัน นำเลขชี้กำลังมาบวกกัน จะได้

5³x 5⁹      =    5³⁺⁹

=     5¹²

ตอบ  5¹²

4)    (-7)⁵ x (-7)¹²

เนื่องจากฐานทั้ง 2 เท่ากัน นำเลขชี้กำลังมาบวกกัน จะได้

 (-7)⁵ x (-7)¹²    =    (-7)⁵⁺¹²

(-7)¹⁷

ตอบ  (-7)¹⁷

5)    (0.02)² x (0.02)⁷

เนื่องจากฐานทั้ง 2 เท่ากัน นำเลขชี้กำลังมาบวกกัน จะได้

 (0.02)² x (0.02)⁷    =    (0.02)²⁺⁷

      =    (0.02)⁹

ตอบ  (0.02)⁹

จากตัวอย่างที่ 1 เป็นไปตามสมบัติของเลขยกกำลัง ข้อที่ 1)  ax an  = am + n 

ตัวอย่างที่ 2  จงหาค่าของจำนวนต่อไปนี้

1)    (9²)³

2)    (y⁶)²

3)    (3²)⁵ 

วิธีทำ 1)     (9²)³     =    9²x³     (นำเลขชี้กำลังมาคูณกัน คือ 2 x 3)

     =    9⁶

ตอบ     9⁶

2)      (y⁶)²      =     y⁶x²     (นำเลขชี้กำลังมาคูณกัน คือ 6 x 2)

     =     y¹²

ตอบ      y¹²

3)      (3²)⁵     =    3²x

     =    3¹⁰

ตอบ     3¹⁰

จากตัวอย่างที่ 2 เป็นไปตามสมบัติของเลขยกกำลัง ข้อที่ 2)  (am)n = amn 

ตัวอย่างที่ 3  จงหาค่าของ

1)    (5 x 2)³

2)    (z x p)²

วิธีทำ 1)     (5 x 2)³     =  5³ x 2³     (นำ 3 ไปยกกำลังทุกจำนวน)

ตอบ      5³ x 2³

2)      (z x p)²     =    z² x p²  (นำ 2 ไปยกกำลังทุกจำนวน)

ตอบ     z² x p²

จากตัวอย่างที่ 3 เป็นไปตามสมบัติของเลขยกกำลัง ข้อที่ 3)   (a x b)n = an x bn

ตัวอย่างที่ 4-5

ตัวอย่างต่อไปนี้ ฐานของเลขยกกำลัง มีทั้ง จำนวนเต็ม เศษส่วน และทศนิยม แต่ไม่ว่าฐานจะเป็นยังไง เราก็สามารถหาคำตอบได้เสมอ โดยการทำฐานให้เท่ากัน เมื่อฐานเท่ากันแล้ว ให้นำเลขชี้กำลังมาบวกกัน

ตัวอย่างที่ 4  จงหาค่าของผลคูณของเลขยกกำลังต่อไปนี้ โดยให้เลขชี้กำลังเป็นจำนวนเต็มบวก

1)     2 x 8²

2)    (0.5)³ x (½)²

3)    (-5)⁴ x 5³ 

4)    (-3)⁴ x 9 x 27 

วิธีทำ 1)     2 x 8²    =     2 x (2³)²         (ทำฐานให้เท่ากัน ซึ่ง 8 = 2³)

      =     2 x 2³x²  

      =     2 x 2⁶              (ฐานเป็น 2 ที่ไม่เขียนเลขชี้กำลัง นั่นคือ เลขชี้กำลังเป็น 1)

      =      2¹⁺ ⁶              (เมื่อฐานเท่ากันแล้ว ให้นำเลขชี้กำลังมาบวกกัน )

      =      2⁷

ตอบ   2⁷

2)    (0.5)³ x (½)²   =    (½)³ x (½)²     (ทำฐานให้เท่ากัน ซึ่ง 0.5 = ½)

      =    (½)³⁺²           (เมื่อฐานเท่ากันแล้ว ให้นำเลขชี้กำลังมาบวกกัน)

      =    (½)

ตอบ  (½)

3)    เนื่องจาก (-5)⁴   =     (-5) x (-5) x (-5) x (-5) = 5⁴ 

    จะได้ (-5)⁴ x 5³   =     5⁴ x 5³ 

      =      5⁴⁺³  

      =      5⁷

ตอบ     5⁷

4)   เนื่องจาก (-3)⁴   =    (-3) x (-3) x (-3) x (-3) = 3⁴ 

9   =    3²

27 =    3³

จะได้ (-3)⁴ x 9 x 27 =     3⁴ x x 3³ 

      =      3⁴⁺²⁺³  

      =     3⁹

ตอบ     3⁹

ตัวอย่างที่ 5    จงหาค่าของ a² b³ x a³b

วิธีที่ 1      a² b³ x a³b        =       (a x a x b x b x b) x (a x a x a x b)

=       (axaxaxaxa) x (bxbxbxb)

=       ax b

=       ab

วิธีที่ 2   a² b³ x a³b        =       a² x b³x a³x b

=       a² x x b³x b

=       a²⁺³ x b³⁺¹

=       a⁵ x b

=      ab

เมื่อน้องๆเรียนรู้เรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งจากสมบัติของเลขยกกำลังจะพบว่า ารคูณเลขยกกำลังที่มีฐานเดียวกันต้องนำเลขชี้กำลังมาบวกกัน เมื่อน้องๆ ได้ศึกษาจากตัวอย่างหลายๆตัวอย่าง ทำให้น้องๆ สามารถคูณเลขยกกำลัง ได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

        คลิปวิดีโอนี้ได้รวบรวม การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก โดยแสดงวิธีคิดไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

NokAcademy_ม2 การใช้ Future Simple กับการตั้งคำถามด้วย Wh-Questions

การใช้ Future Simple กับการตั้งคำถามด้วย Wh-Questions

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุย “การใช้  Future Simple กับการตั้งคำถามด้วย Wh-Questions” หากพร้อมแล้วก็ไปลุยกันเลยจร้า Future Simple Tense     Future Simple Tense หรือ ประโยคอนาคตกาล เอาไว้พูดถึงเรื่องราวในอนาคต เช่น สิ่งที่ยังไม่เกิดขึ้น สิ่งที่จะเกิดขึ้น สิ่งที่จะทำ เป็นต้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1