จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ

จำนวนตรงข้าม

      “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)       

     ทราบหรือไม่ว่า จำนวนที่อยู่ทิศทางต่างกันแต่มีระยะห่างจาก 0 เท่ากัน คือ จำนวนอะไร (จำนวนตรงข้าม) ยกตัวอย่าง ดังนี้

เช่น      จำนวนตรงข้ามของ 4 เขียนแทนด้วย -4

   จำนวนตรงข้ามของ -4 เขียนแทนด้วย -(-4)

    และเนื่องจากจำนวนตรงข้ามของ -4 คือ 4

ดังนั้น  -(-4) = 4

สรุปได้ว่า

ถ้า a เป็นจำนวนใดๆ จำนวนตรงข้าม ของ a มีเพียงจำนวนเดียวและเขียนแทนด้วย  – a  เรียก – a ว่า จำนวนตรงข้าม ของ a

ตัวอย่างที่ 1  จงเขียนจำนวนตรงข้ามของจำนวนต่อไปนี้

  1.   -7 เป็นจำนวนตรงข้ามของ                        
  2.                     เป็นจำนวนตรงข้ามของ    15
  3.                     เป็นจำนวนตรงข้ามของ   -24
  4.   0 เป็นจำนวนตรงข้ามของ                       
  5.   32  เป็นจำนวนตรงข้ามของ                        

เฉลย

  1.   -7    เป็นจำนวนตรงข้ามของ    7
  2.   -15  เป็นจำนวนตรงข้ามของ    15
  3.   24   เป็นจำนวนตรงข้ามของ    -24
  4.   0     เป็นจำนวนตรงข้ามของ    0
  5.   32   เป็นจำนวนตรงข้ามของ    -32     

ค่าสัมบูรณ์

พิจารณาเส้นจำนวนต่อไปนี้ค่าสัมบูรณ์2

  1.    ระยะห่างของจำนวนเต็มบนเส้นจำนวนเท่ากันหรือไม่ (เท่ากัน)
  2.    -4 อยู่ห่างจาก 0 อยู่เท่าใด (4)
  3.    4 อยู่ห่างจาก 0 อยู่เท่าใด (4)
  4.    ระยะห่างของ -4 และ 4 อยู่ห่างจาก 0 เท่ากันหรือไม่ (เท่ากัน)

จะเห็นว่า 4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย เรียกว่า  ค่าสัมบูรณ์ของ 4 เท่ากับ 4 เขียนแทนด้วย l4l = 4 

            -4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย เรียกว่า  ค่าสัมบูรณ์ของ -4  เท่ากับ 4 เขียนแทนด้วย l-4l = 4 

สรุปได้ว่า

ค่าสัมบูรณ์ของจำนวนเต็มใดๆ คือ ระยะห่างของจำนวนเต็มนั้น กับ 0 (ศูนย์) บนเส้นจำนวน ดังนั้นค่าสัมบูรณ์ของจำนวนเต็มจึงเป็นบวกเสมอ โดยมีสัญลักษณ์ คือ l l  

ตัวอย่างที่ 2   3  อยู่ห่างจาก  0  เป็นระยะทางกี่หน่วย

ค่าสัมบูรณ์ 3

ตอบ 3  อยู่ห่างจาก  0  เป็นระยะทาง  3  หน่วย  กล่าวว่า  ค่าสัมบูรณ์ของ  3  เท่ากับ  3 หรือ l3l = 3 

ตัวอย่างที่ 3   -3  อยู่ห่างจาก  0  เป็นระยะทางกี่หน่วย

ค่าสัมบูรณ์ 4

ตอบ  -3  อยู่ห่างจาก 0  เป็นระยะทาง  3  หน่วย  กล่าวว่า ค่าสัมบูรณ์ของ -3 เท่ากับ  3  หรือ l-3l = 3 

ตัวอย่างที่ 4   4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย

ค่าสัมบูรณ์5

ตอบ 4  อยู่ห่างจาก 0  เป็นระยะทาง  4  หน่วย  กล่าวว่า ค่าสัมบูรณ์ของ 4 เท่ากับ 4 หรือ l4l = 4 

สรุป     ค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะทางที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน

เมื่อน้องๆเรียนรู้เรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ จากตัวอย่างข้างต้น ทำให้สามารถหาจำนวนตรงข้ามและค่าสัมบูรณ์ของจำนวนเต็มใดๆได้  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การบวกลบจำนวนเต็ม ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และบวกลบจำนวนเต็มได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนตรงข้ามและค่าสัมบูรณ์

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนตรงข้ามและค่าสัมบูรณ์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบายตัวอย่างและสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ  บางครั้งเรียกว่า

NokAcademy_Infinitives after verbs

Infinitives after verbs

Hi guys! สวัสดีค่ะนักเรียนม.5 ที่รักทุกคนวันนี้เราจะไปดูการใช้ Infinitives after verbs กันเด้อ ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า Let’s go!   ทบทวนความหมายของ “Infinitive”   Infinitive คือ   กริยารูปแบบที่ไม่ผัน ไม่เติมอะไรใดๆเลย ที่นำหน้าด้วย to (Infinitive with “to” หรือ

ทฤษฎีบทพีทาโกรัส

ทฤษฎีบทพีทาโกรัส

บทความนี้น้องๆจะได้เรียนรู้กี่ยวกับการพิสูจน์ที่ทฤษฎีบทพีทาโกรัส ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวมของกำลังสองของอีกสองด้านที่เหลือในแง่ของพื้นที่

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

ศึกษาประวัติความเป็นมาและเรื่องย่อของเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช เป็นวรรณคดีประเภท พงศาวดาร ที่มีการแปลมาจากพงศาวดารมอญ น้อง ๆ หลายคนคงจะทราบกันดีอยู่แล้วว่าพงศาวดารก็คือเรื่องราวหรือเหตุการณ์ที่เกี่ยวกับประเทศชาติหรือพระมหากษัตริย์ แต่ทราบกันหรือไม่คะว่าทำไมในแบบเรียนภาษาไทยของเรานั้นถึงต้องเรียนเรื่องราชาธิราช ที่เป็นพงศาวดารมอญด้วย วันนี้เราจะพาน้อง ๆ ทุกคนไปเรียนรู้ประวัติความเป็นมาของเรื่องราชาธิราชรวมไปถึงเรื่องย่อ ซึ่งในบทที่เราจะเรียนนี้คือตอน สมิงพระรามอาสา เรื่องราวจะเป็นอย่างไรบ้าง ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ราชาธิราช   ประวัติความเป็นมา     ราชาธิราชเป็นวรรณคดีร้อยแก้วที่พระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราชโปรดเกล้าฯ

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1