การบวกและการลบเอกนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การบวกและการลบเอกนาม

บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5

เอกนาม

เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก

ค่าคงตัว คือ ตัวเลข

ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y

เอกนาม ประกอบด้วย 2 ส่วนคือ

1) ส่วนที่เป็นค่าคงตัว เรียกว่า สัมประสิทธิ์ของเอกนาม                                                                                       

2) ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร โดยมีเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก  เรียกผลบวกของเลขชี้กำลังของตัวแปรทั้งหมดในเอกนามว่า ดีกรีของเอกนาม

ตัวอย่างที่ 1  จงบอกสัมประสิทธิ์และดีกรีของเอกนามต่อนี้

  1. 15x4             สัมประสิทธิ์คือ 15         ดีกรีของเอกนามคือ 4
  2. – 5                สัมประสิทธิ์คือ -5         ดีกรีของเอกนามคือ 0
  3. x3y2              สัมประสิทธิ์คือ  1          ดีกรีของเอกนามคือ 5
  4. – 6x3y4z       สัมประสิทธิ์คือ -6         ดีกรีของเอกนามคือ 8

จากตังอย่างที่ 1 น้องๆจะเห็นว่าสัมประสิทธ์ของเอกนามจะเป็นตัวเลขที่อยู่หน้าตัวแปรนั่นเองค่ะ ถ้าโจทย์ไม่เขียนตัวแปร แสดงว่า เลขชี้กำลังของตัวแปรเป็น 0 ทำให้ดีกรีของเอกนามคือ 0 เช่น -5 เขียนได้อีกแบบคือ – 5x0

ตัวอย่างที่ 2  จงพิจารณานิพจน์ต่อไปนี้ว่าเป็นเอกนามหรือไม่ เพราะเหตุใด

  1. – 8x-2 ไม่เป็นเอกนาม เพราะตัวแปร x มีเลขชี้กำลังเป็น -2  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  2. \frac{5a^{2}}{b} ไม่เป็นเอกนาม  เพราะเมื่อเขียน \frac{5a^{2}}{b} ในรูปการคูณจะได้ 5a2b-1 ทำให้ b มีเลขชี้กำลังเป็น  -1  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  3. 4x + 9 ไม่เป็นเอกนาม  เพราะไม่สามารถเขียนนิพจน์นี้ให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรได้

             เอกนามที่จะนำมาบวกหรือลบกันได้นั้นจะต้องเป็นเอกนามที่คล้ายกัน ฉะนั้นก่อนที่จะทำการบวกหรือลบเอกนามต้องตรวจสอบก่อนว่าเป็นเอกนามที่คล้ายกันหรือไม่

ตัวอย่างที่ 3  จงบอกว่าเอกนามที่กำหนดให้แต่ละคู่คล้ายกันหรือไม่

  1. x2y3 กับ – 5x2y3
  2. 3x2 กับ x2
  3. 6 กับ 12p
  4. xy กับ x2y
  5. 4abc0 กับ 9ab
  6. 6x3 กับ 6x

                               คล้ายกัน                                         ไม่คล้ายกัน

                               3x2 กับ x2                                         6x3 กับ 6x

                               x2y3 กับ – 5x2y3                               xy กับ x2y

                               4abc0 กับ 9ab                                 6 กับ 12p

เอกนามสองเอกนามจะคล้ายกัน ก็ต่อเมื่อ

  1. เอกนามทั้งสองมีตัวแปรชุดเดียวกัน
  2. เลขชี้กำลังของตัวแปรตัวเดียวกันในแต่ละเอกนามเท่ากัน

การบวกเอกนาม

เอกนาม 2 เอกนามจะบวกกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน การบวกเอกนามจะใช้สมบัติการแจกแจง  โดยนำสัมประสิทธิ์ของเอกนามมาบวกกัน และมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลบวกของเอกนามที่คล้ายกัน                                                                                                                                                  = (ผลบวกของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 4  จงหาผลบวกของเอกนามต่อไปนี้

  1. 7x + 6x
  2. – 6mn + 4mn – 6
  3. 7xy2 + 5x2y
  1. 7x + 6x

   วิธีทำ  7x + 6x = (7 + 6)(x)

       =13x

              ตอบ  13x

  1. – 6mn + 4mn – 6

             วิธีทำ – 6mn + 4mn = (- 6 + 4)(mn)

                                                 = – 2mn

               ตอบ – 2mn

  1. 7xy2 + 5x2y

             วิธีทำ 7xy2 + 5x2y = 7xy2+ 5x2y

             ตอบ 7xy2 + 5x2y

             สำหรับเอกนามที่ไม่คล้ายกันนั้น จะนำสัมประสิทธิ์มารวมกันไม่ได้ จึงเขียนให้อยู่ในรูปการบวกของเอกนามเช่นเดิม เหมือนในข้อ 3

การลบเอกนาม

การลบเอกนามว่าเอกนาม 2 เอกนามจะลบกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน  การลบเอกนามจะใช้สมบัติการแจกแจงโดยนำสัมประสิทธิ์ของเอกนามมาลบกันและมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลลบของเอกนามที่คล้ายกัน

= (ผลลบของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 5   จงหาผลลบของเอกนามต่อไปนี้

  1. 8x – 6x

วิธีทำ 8x – 6x = (8 – 6)(x)

   = 2x

ตอบ 2x

  1. 20ab2 – 15ab2

วิธีทำ 20ab2 – 15ab2 = (20-15)( ab2)

     = 5ab2

ตอบ 5ab2

  1. 8xy3 – 6xy2

วิธีทำ 8xy3 – 6xy2 = 8xy3 – 6xy2

ตอบ 8xy3 – 6xy2

           สำหรับเอกนามที่ไม่คล้ายกันนั้น  จะนำสัมประสิทธิ์มาลบกันไม่ได้ จึงเขียนให้อยู่ในรูปการลบของเอกนามเช่นเดิมเหมือนในข้อ 3

สรุป

สิ่งที่น้องๆควรรู้ คือเอกนามจะบวกหรือลบกันได้ ก็ต่อเมื่อ เป็นเอกนามที่คล้ายกัน

ผลลบของเอกนามที่คล้ายกัน = (ผลบวกของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ผลลบของเอกนามที่คล้ายกัน = (ผลลบของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ความรู้ในเรื่องการบวกลบเอกนามจะเป็นพื้นฐานในการแยกตัวประกอบของพหุนาม น้องๆสามารถดูคลิปวิดีโอในการแยกตัวประกอบพหุนามได้เลยค่ะ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ProfilePastTense

มารู้จักกับ Past Tenses กันเถอะ

สวัสดีค่ะนักเรียนที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Past Tenses ที่ไม่ได้มีแค่ Past Simple Tenses นะคะ   มาทบทวนเรื่อง Past Tenses กันเถอะ     การพูดถึงเหตุการณ์ที่เกิดในอดีตนั้นสามารถพูดได้หลายรูปแบบ แต่จะพูดอย่างไรให้สอดคล้องกับบริบทนั้นย่อมสำคัญเช่นกัน และก่อนอื่นเราจะต้องรู้จักก่อนว่า การเล่าถึงงเหตุการณ์ในอดีตนั้นเราสามารถเล่าได้หลายแบบ ครูจะขอยกตัวอย่างจากสถาณการณ์การใช้ไปหาโครงสร้างและคำศัพท์ที่จำเป็นเพื่อให้เราเข้าใจความสำคัของ Tense นั้นๆ ร่วมกับเทคนิค “Situational

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

หลักการเบื้องต้นของอัตราส่วน

หลักการเบื้องต้นของอัตราส่วน

“อัตราส่วน คือ ปริมาณ อย่างหนึ่งที่แสดงถึง จำนวน หรือ ขนาด ตามสัดส่วนเมื่อเปรียบเทียบกับอีก ปริมาณ หนึ่งที่เกี่ยวข้องกัน ที่อาจมีได้ตั้งแต่สองปริมาณขึ้นไป”

ความสัมพันธ์

ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

ศึกษาประวัติความเป็นมาและเรื่องย่อของเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช เป็นวรรณคดีประเภท พงศาวดาร ที่มีการแปลมาจากพงศาวดารมอญ น้อง ๆ หลายคนคงจะทราบกันดีอยู่แล้วว่าพงศาวดารก็คือเรื่องราวหรือเหตุการณ์ที่เกี่ยวกับประเทศชาติหรือพระมหากษัตริย์ แต่ทราบกันหรือไม่คะว่าทำไมในแบบเรียนภาษาไทยของเรานั้นถึงต้องเรียนเรื่องราชาธิราช ที่เป็นพงศาวดารมอญด้วย วันนี้เราจะพาน้อง ๆ ทุกคนไปเรียนรู้ประวัติความเป็นมาของเรื่องราชาธิราชรวมไปถึงเรื่องย่อ ซึ่งในบทที่เราจะเรียนนี้คือตอน สมิงพระรามอาสา เรื่องราวจะเป็นอย่างไรบ้าง ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ราชาธิราช   ประวัติความเป็นมา     ราชาธิราชเป็นวรรณคดีร้อยแก้วที่พระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราชโปรดเกล้าฯ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1