ลำดับ

ลำดับ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับ

ลำดับ ( Sequence ) คือ เซตของจำนวนหรือตัวเลขที่เรียงกันเป็นระเบียบและมีเงื่อนไข เช่น ลำดับของจำนวนนับที่เพิ่มขึ้นทีละ 1 ก็จะสามารถเขียนได้เป็น

1, 2, 3, 4, … โดยตัวเลขเหล่านี้ เรียกว่า พจน์ ( Term ) เซตของลำดับจะเขีบยแทนด้วย a_{1},a_{2},a_{3},...,a_{n},...

และเราจะเรียก a_{1} ว่าพจน์ที่ 1

เรียก a_{2} ว่าพจน์ที่ 2

\vdots

เรียก a_{n} ว่าพจน์ที่ n หรือพจน์ทั่วไปหรือ พจน์สุดท้าย

ตัวอย่างของลำดับ  เช่น 1, 3, 5, 7, ….

โดเมนและเรนจ์ของลำดับ

โดเมนของลำดับคือ พจน์ของลำดับ หรือ n นั่นเอง ซึ่ง n ต้องเป็นจำนวนนับ

เรนจ์ของลำดับคือ ค่าของ a_n นั่นเอง

เช่น F = {(1,10),(2,20),(3,30)}  จะได้ว่า 

โดเมน คือ {1, 2, 3}

เรนจ์คือ {10, 20, 30}

ชนิดของ ลำดับ

ลำดับจำกัด คือ ลำดับที่สามารถระบุจำนวนพจน์ได้

เช่น 2, 4, 6, 8, … , 50  มี 25 พจน์

1, 2, 3, 4, … , n  มี n พจน์

ลำดับอนันต์ คือ ลำดับที่ไม่สามารถบอกจำนวนพจน์ได้

เช่น 1, 2, 3, …

“วิธีสังเกต”

ลำดับอนันต์จะมีจุดสามจุดอยู่หลังของลำดับเสมอ เพื่อแสดงให้เห็นว่าลำดับนี้ไปต่อได้เรื่อย ๆ ไม่มีที่สิ้นสุด

ตัวอย่างของ ลำดับ

1) ให้ ข้อ A คือ 1,4,9,16,25,…
ข้อ B คือ a_n= 16n เมื่อ n= 1,2,3,4
ข้อ C คือ a_n=3n² + 7 เมื่อ n เป็นจำนวนเต็มบวก

จะได้ว่า A  เป็นลำดับอนันต์ 

B เป็นลำดับจำกัด

C เป็นลำดับอนันต์

1) 7, 14, 21, 28, 35, …  เป็นลำดับอนันต์ ที่เพื่มขึ้นทีละ 7

2) 3, 6, 12, 24, 48  เป็นลำดับจำกัด ที่เพิ่มขึ้น 2 เท่าของพจน์ก่อนหน้า

3) 4, 9, 16, 25, 36, 49  ต้องหาสองครั้งเพราะการเพิ่มขึ้นของลำดับยังไม่เป็นระบบ

น้องจะเห็นว่าลำดับในข้อ 3 เป็นลำดับที่มีผลต่างร่วมเป็นค่าคงที่ในครั้งที่สอง หรือเพิ่มขึ้นอย่างคงที่ในครั้งที่สองนั่นเอง

จะเห็นว่าในลำดับนั้น เพิ่มขึ้นอย่างไม่เป็นระบบ คือ เพิ่มขึ้นทีละ 5, 6, 7, 8, 9 ตามลำดับ แต่ลองสังเกตดูว่า การเพิ่มขึ้นของ 5, 6,7,8,9 นั้นเพิ่มขึ้นทีละ 1 ดังนั้นจึงเป็นการเพิ่มขึ้นอย่างคงที่ในครั้งที่ 2 นั่นเอง

 

การหาพจน์ทั่วไปของลำดับ

วิธีการหาพจน์ที่ n จะแยกเป็น 3 กรณี

1) ระหว่างพจน์มีผลต่างที่เป็นค่าคงที่ นั่นก็คือ เป็นลำดับเพิ่มขึ้นหรือลดลง เป็นค่าคงที่ เช่น 8, 6, 4, 2  ( ลดลงทีละ 2 )

รูปแบบของพจน์ทั่วไปคือ a_{n}=an+b

ตัวอย่าง  หาพจน์ทั่วไปของลำดับ 1, 3, 5, 7, …

จากโจทย์ เราจะรู้ว่า a_{1}= 1, a_{2}=3

และจากสูตร a_{n}=an+b

เมื่อ n = 1 ; a_{1}=1=a(1)+b \rightarrow (1)

n = 2 ; a_{2}=3=a(3)+b \rightarrow (2)

(2) -(1) ; 2=a

แทน a_{1} ใน (1) จะได้ว่า 1=2+b

b=-1

ดังนั้น พจน์ทั่วไป ของลำดับข้างต้นคือ a_{n}=2n -1

2) ระหว่างพจน์มีอัตราส่วนร่วมเป็นค่าคงที่

รูปแบบของพจน์ทั่วไป คือ a_{n}=ar^{n}+b โดยที่ r คืออัตราส่วนร่วม

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 8, 16, 32, …

จะเห็นว่าลำดับดังกล่าวเพิ่มขึ้นเป็นสองเท่า ของพจน์ก่อนหน้า

ดังนั้น r = 2 และจากโจทย์จะได้ว่า a_{1}= 4, a_{2}=8

เมื่อ n = 1 ; a_{1}=4=a(2)^{1}+b \rightarrow (1)

n = 2 ; a_{2}=8=a(2)^{2}+b \rightarrow (2)

(2) – (1) ; 4 = ( 4 – 2 )a

แทน a_{1} ใน (1) จะได้ว่า 4=2(2)+b

b=0

ดังนั้น a_{n}=2(2)^{n}=2^{n+1}

 

3) ระหว่างพจน์มีผลต่างเป็นค่าคงที่ในการหาครั้งที่ 2

รูปพจน์ทั่วไป คือ \inline a_{n}=an^{2}+bn+c

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 9, 16, 25, …

เมื่อ n = 1 ; a_{1}=4=a(1)+b(1)+c \rightarrow (1)

n = 2 ; a_{2}=9=a(4)+b(2)+c \rightarrow (2)

n = 3 ; a_{3}=16=a(9)+b(3)+c \rightarrow (3)

(2)- (1) ; 5 = 3a +b\rightarrow (4)

(3) – (2) ; 7 = 5a +b\rightarrow(5)

(4)-(5) ; 2 =2a \rightarrow a=1

แทน a = 1 ใน (4) จะได้ 5=3+b\rightarrow b=2

แทน a = 1 และ b = 2 ใน (1) จะได้ 4 = 1 + 2 + c

c = 1

ดังนั้น รูปพจน์ทั่วไปคือ a^{n}=n^{2}+2n+1

ตัวอย่างของลำดับ

1.) จงหาว่าพจน์หลังกับพจน์หน้ามีความสัมพันธ์กันอย่างไร

1.1) 8, 6, 4, 2, ….

ตอบ พจน์หลังลดลงจากพจน์หน้าทีละ 2

1.2) 5, 10, 15, 20, …

ตอบ พจน์หลังเพิ่มขึ้นจากพจน์หน้าทีละ 5

 

2.) หา 4 พจน์ถัดไปของลำดับต่อไปนี้

2.1) 2, 5, 8, 11, …

วิธีทำ จากโจทย์จะเห็นว่าเป็นลำดับที่เพิ่มขึ้นทีละ 3

ดังนั้น 4 พจน์ถัดไปคือ 11+3 = 14, 14+3 = 17, 17+3 = 20, 20+3=23

นั่นคือ 14, 17, 20, 23

 

2.1)  200, 190, 170, 140,…

วิธีทำ จากโจทย์จะเห็นว่า พจน์ 2 ลดลงจากพจน์แรก 10 พจน์ 3 ลดลงจากพจน์ 2 20 และพจน์ 4 ลดลงจาดพจน์ 3 30

เราจะได้ลำดับใหม่ซึ่งเป็นลำดับของผลต่างระหว่างพจน์ ดังนี้ 10, 20, 30,… ดังนั้นอีก 3 พจน์ถัดไปควรจะเป็น 40, 50, 60 ตามลำดับ

ดังนั้นจะได้ว่า พจน์ที่ 5 ของลำดับในโจทย์ข้างต้น ควรจะน้อยกว่าพจน์ที่ 4 ไป 40 จะได้ว่า พจน์ที่ 5 คือ 140-40=100

พจน์ที่6 ต้องน้อยกว่าพจน์ที่ 5 ไป 50 ดังนั้น พจน์ที่ 6 คือ 100-50=50

พจน์ที่7 ต้องน้อยกว่าพจน์ที่ 6 อยู่ 60 ดังนั้น พจน์ที่7 คือ 50-60= -10

พจน์ที่ 8 ต้องน้อยกว่า พจน์ที่7 อยู่ 70 ดังนั้นพจน์ที่8 คือ -10 – 70 = -80

ดังนั้น 4 พจน์ถัดไปของลำดับ 200, 190, 170, 140,… คือ 100, 50, -10, -80 ตามลำดับ

3.) จงเขียน 5 พจน์แรกของลำดับต่อไปนี้

3.1) a_n=2n-1

วิธีทำ

แทน n=1 จะได้ว่า a_1=2(1)-1=1

n=2 จะได้ a_2=2(2)-1=3

n=3 จะได้ a_3=2(3)-1=5

n=4จะได้ a_4=2(4)-1=7

n=5จะได้ a_5=2(5)-1=9

จากการแทนค่า n ไปแล้ว เราจะได้ลำดับ 5 พจน์แรกดังนี้ 1, 3, 5, 7, 9

 

3.2) a_n=\left\{\begin{matrix} n+1 : n<3\\ 2n :\geq 3 \end{matrix}\right.

วิธีทำ จากโจทย์จะเห็นว่า ถ้า n น้อยกว่า 3 ดังนั้นเราจะใช้ n +1 ในการหาพจน์ที่ 1 และพจน์ที่ 2

และเราจะใช้ 2n ในการหาพจน์ที่ 3 ถึงพจน์ที่ 5

จะได้5พจน์แรกของลำดับดังนี้ 1+1, 2+1, 2(3), 2(4), 2(5) นั่นคือ 2, 3, 6, 8, 10

 

 

วิดีโอเพิ่มเติมเกี่ยวกับความหมายของลำดับ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น

คำซ้ำคืออะไร เรียนรู้และเข้าใจหลักการสร้างคำอย่างง่าย

  จากที่ได้เรียนเรื่องการสร้างคำประสมและคำซ้อนไปแล้ว บทเรียนหลักภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้การสร้างคำอีกหนึ่งชนิดที่สำคัญไม่แพ้สองคำก่อนหน้า นั่นก็คือ คำซ้ำ นั่นเองค่ะ คำซ้ำคืออะไร มีวิธีสร้างคำได้อย่างไรบ้าง วันนี้เราไปทำความเข้าใจเกี่ยวกับเรื่องนี้พร้อม ๆ กันเลยค่ะ   คำซ้ำ     คำซ้ำคืออะไร?   คำซ้ำ หมายถึง การสร้างคำขึ้นใหม่ โดยนำคำมูลซึ่งส่วนมากเป็นคำพยางค์เดียวมาซ้ำกันแล้วมีความหมายเปลี่ยนแปลงไป อาจเน้นหนักขึ้น หรือเบาลง

วิธีพูดสรุปความจากเรื่องที่ฟังและดูอย่างง่ายๆ

การพูดสรุปความสำคัญอย่างไร ? น้อง ๆ หลายคนคงจะเคยประสบปัญหาเวลาที่ต้องออกไปนำเสนองานหน้าชั้นเรียนแล้วไม่รู้ว่าจะพูดอย่างไรให้เพื่อนกับครูเข้าใจ เพราะเนื้อหาที่เราจำมามันก็เยอะเสียเหลือเกิน บทเรียนภาษาไทยวันนี้จะช่วยให้น้อง ๆ รับมือกับปัญหาเหล่านั้นได้ เพียงแค่น้อง ๆ มีความเข้าใจในเรื่องการพูดสรุปความ วันนี้เรามาดูไปพร้อม ๆ กันเลยนะคะว่าการพูดสรุปความจากเรื่องที่ฟังหรือดูจะมีวิธีใดบ้าง   การพูดสรุปความจากเรื่องที่ฟังและดู   การพูดคืออะไร   องค์ประกอบของการพูด   ผู้พูด คือผู้ที่มีจุดมุ่งหมายสำคัญที่จะนำเสนอความรู้ความคิดเห็นให้ผู้ฟังได้รับรู้และเข้าใจ เนื้อเรื่อง

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

รามเกียรติ์ ตอน นารายณ์ปราบนนทก ศึกษาตัวบทและคุณค่า

หลังได้เรียนรู้ความเป็นมาและเรื่องย่อของบทละครเรื่อง รามเกียรติ์ ตอน นารายณ์ปราบนนทก กันไปแล้ว ในบทนี้ น้อง ๆ จะได้เรียนรู้เพิ่มเติมเกี่ยวกับตัวบทเด่น ๆ ที่น่าสนใจในเรื่อง พร้อมทั้งจะได้ตามไปดูคุณค่าของเรื่องว่ามีอะไรบ้าง ถ้าพร้อมแล้ว ไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ศึกษาตัวบทละครเรื่อง รามเกียรติ์ ตอน นารายณ์ปราบนนทก     เหลือบเห็นสตรีวิไลลักษณ์       พิศพักตร์ผ่องเพียงแขไข

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1