ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C

เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof 

ฟังก์ชันประกอบ

จากรูป จะเห็นว่า สมาชิกในเซต B นั้น เป็นทั้งเรนจ์ของ f และเป็นโดเมนของ g

ดังนั้น การที่จะหา gof ได้  y ต้องอยู่ในเรนจ์ของฟังก์ชัน f และ โดเมนของฟังก์ชัน g พร้อมๆกัน นั่นคือ \mathrm{R_f \cap D_g \neq \O}

และจากรูปจะเห็นว่า

f เป็นความสัมพันธ์จาก A ไป B

g เป็นความสัมพันธ์จาก B ไป C

gof เป็นความสัมพันธ์จาก A ไป C

 

บทนิยาม

ให้ f และ g เป็นฟังก์ชัน และ ฟังก์ชันประกอบ แล้วฟังก์ชันประกอบของ f และ g คือ gof โดยที่ gof(x) = g(f(x))

และ \mathrm{D_{gof}} = {x ∈ \mathrm{D_f} : f(x) ∈ \mathrm{D_g}}

 

เช่น

ให้ f = {(1, 2), (2, 4), (3, 3), (4, 5)} และ g = {(1, 3), (2, 5), (3, 2), (4, 4)} จงหา gof

ขั้นแรก คือเราต้องตรวจสอบก่อนว่า ฟังก์ชันประกอบ

\mathrm{R_f} = {2, 3, 4, 5} และ \mathrm{D_g} = {1, 2, 3, 4} ดังนั้น \mathrm{R_f\cap D_g} = {2, 3, 4} นั่นคือ ฟังก์ชันประกอบ

ดังนั้น หา gof ได้

ฟังก์ชันประกอบ

ตัวอย่างการหาฟังก์ชันประกอบ

ให้ f(x) = 2x – 3 และ g(x) = x² + 5

จงหา gof, fog, gof(2), fog(3)

พิจารณา \mathrm{D_f} = \mathbb{R} จะได้ว่า \mathrm{R_f} = \mathbb{R}  และพิจารณา  \mathrm{D_g} = \mathbb{R} จะได้ \mathrm{R_g}=\mathbb{R}

จาก  \mathrm{R_f} = \mathbb{R}  และ  \mathrm{D_g} = \mathbb{R}  จะได้ว่า ฟังก์ชันประกอบ นั่นคือ หา gof ได้

จาก \mathrm{R_g}=\mathbb{R} และ \mathrm{D_f} = \mathbb{R} จะได้ว่า ฟังก์ชันประกอบ  นั่นคือ หา fog ได้

 gof

ฟังก์ชันประกอบ fog

ฟังก์ชันประกอบ

gof(2)

ฟังก์ชันประกอบ

fog(3)

ฟังก์ชันประกอบ

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Tenses : Present Simple Tense/ Present Continuous Tense

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดู “การใช้ Tenses : Present simple/ Present Continuous” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว หากพร้อมแล้วก็ไปลุยกันเลย ทบทวน Present Simple Tense       ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

การหารเศษส่วนและจำนวนคละ

เทคนิคการหารเศษส่วนและจำนวนคละ

บทความที่แล้วเราได้พูดถึงหลักการคูณเศษส่วนและจำนวนคละไปแล้ว บทความนี้จะเป็นเรื่องต่อยอดจากการคูณก็คือเรื่องการหารเศษส่วนและจำนวนคละ ถ้าใครอ่านบทความการคูณเศษส่วนและจำนวนคละเข้าใจแล้วรับรองว่าเรื่องนี้จะยิ่งง่ายมากกว่าเดิมแน่นอน เพราะต้องใช้เรื่องการคูณเศษส่วนและจำนวนคละในการคำนวณหาคำตอบเช่นกัน สิ่งที่บทความนี้จะมอบให้กับน้อง ๆก็คือขั้นตอนการแสดงวิธีทำที่เห็นภาพและเข้าใจง่ายเหมือนกันบทความที่แล้วมา

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การแจกแจงความถี่ของข้อมูล (Frequency distribution)              การแจกแจงความถี่ของข้อมูล  เป็นวิธีการทางสถิติอย่างหนึ่งที่ใช้ในการจัดข้อมูลที่มีอยู่ให้เป็นหมวดหมู่ เพื่อความสะดวกในการนำเสนอและการวิเคราะห์ข้อมูลเหล่านั้น  มี 2 ลักษณะ คือ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น และ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น การสร้างตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น เหมาะสำหรับข้อมูลที่มีค่าจาการสังเกตไม่มากนักหรือไม่ซับซ้อน  1.

01NokAcademy_Question Tag Profile

เรื่อง Tag Question (1)

สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อ “เรื่อง Tag Question “ พร้อมแล้วก็ไปลุยกันเลยจร้า รู้จักกับ Question Tag (Tag Question หรือ Tail Question)   Question Tag ในบางครั้งเรียกว่า Tag Question หรือ Tail Question ก็ได้จร้า 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1