ดีเทอร์มิแนนต์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ \inline \left | A \right |

โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก

**ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 2×2

ดีเทอร์มิแนนต์

หลักการจำคือ คูณลง ลบ คูณขึ้น

เช่น

ดีเทอร์มิแนนต์

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 3×3

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ 3×3 จะซซับซ้อนกว่า 2×2 นิดหน่อย แต่ยังใช้หลักการเดิมคือ คูณลง ลบ คูณขึ้น และสิ่งที่เพิ่มมาก็คือ การเพิ่มจำนวนหลักเข้าไปอีก 2 หลัก ซึ่งหลักที่เพิ่มนั้นก็คือค่าของ 2 หลักแรกนั่นเอง

ดีเทอร์มิแนนต์

 

ตัวอย่างเมทริกซ์ขนาด 3×3

ดีเทอร์มิแนนต์

 

สมบัติเกี่ยวกับ ดีเทอร์มิแนนต์

ให้ A, B เป็นเมทริกซ์ขนาด n×n

1.) \inline \mathrm{det(A)=det(A^t)}  โดยที่ \inline \mathrm{A^t} คือ เมทริกซ์สลับเปลี่ยน

2.) ถ้า สมาชิกแถวใดแถวหนึ่ง (หรือหลักใดหลักหนึ่ง) เป็น 0 ทุกตัว จะได้ว่า \inline \mathrm{det(A)=0}

เช่น

ดีเทอร์มิแนนต์

3.) ถ้า B คือเมทริกซ์ที่เกิดจากการสลับแถว (หรือหลัก) ของ A เพียงคู่เดียว จะได้ว่า \inline \mathrm{det(B)=-det(A)}

เช่น

ดีเทอร์มิแนนต์

4.) ถ้า B เกิดจากการคูณค่าคงตัว c ในสมาชิกแถวใดแถวหนึ่ง (หลักใดหลักหนึ่ง) ของ A จะได้ว่า \inline \mathrm{det(B)=cdet(A)}

เช่น

5.) \inline \mathrm{det(AB)=det(A)det(B)}

6.) \inline \mathrm{det(I_n)=1}  และ  \mathrm{det(\underbar{0})=0}

7.) \mathrm{det(A^n)=(det(A))^n}

เช่น

8.)  A เป็นเมทริกซ์เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)=0}

9.) A เป็ยเมทริกซ์ไม่เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)\neq 0}

10.) ถ้า A เป็นเมทริกซ์ไม่เอกฐาน แล้วจะได้ว่า \inline \mathrm{det(A^{-1})=\frac{1}{det(A)}}

11.) ถ้า c เป็นค่าคงตัว จะได้ว่า \mathrm{det(cA)=c^ndet(A)}   (n คือมิติของเมทริกซ์ A)

เช่น

ดีเทอร์มิแนนต์

12.) สามเหลี่ยมล่าง และสามเหลี่ยมบน 

ถ้า สมาชิกที่อยู่ใต้เส้นทะแยงมุมหลัก (หรือบนเส้นทะแยงมุมหลัก) เป็น 0 ทุกตัว จะได้ว่า ค่าดีเทอร์มิแนนต์จะเท่ากับ ผลคูณของสมาชิกเส้นทะแยงมุมหลัก

เช่น

ดีเทอร์มิแนนต์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มนุสสภูมิ ตอนที่ว่าด้วยกำเนิดของมนุษย์ในไตรภูมิพระร่วง

ไตรภูมิพระร่วงมีจุดมุ่งหมายที่จะชี้ให้เห็นคุณและโทษของโลกทั้งสามที่ไม่แน่นอน เพื่อที่จะให้มนุษย์ตระหนักถึงกรรมดีและกรรมชั่วและพบกับความสุขไม่ว่าจะอยู่ในโลกไหน โดยในตอน มนุสสภูมิ นี้ก็ได้กล่าวถึงการกำเนิดมนุษย์ที่อธิบายโดยใช้หลักความเชื่อทางพุทธศาสนามาอธิบายจึงทำให้วรรณคดีเรื่องนี้เป็นอีกเรื่องที่มีความสนใจเป็นอย่างมากเลยล่ะค่ะ จากที่ครั้งก่อนเราได้เรียนเรื่องนี้กันไปแล้วในส่วนของที่มาและความสำคัญและเนื้อเรื่องย่อ บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้เพิ่มเติมแต่เป็นเรื่องของตัวบทเพื่อถอดคำประพันธ์ รวมไปถึงศึกษาคุณค่าที่ปรากฏในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูกันเลย ตัวบทเด่น ๆ ในไตรภูมิพระร่วง ตอน มนุสสภูมิ     ถอดความ เป็นการอธิบายถึงวิวัฒนาการของทารกในครรภ์ตั้งแต่เริ่มเป็นเซลล์ โดยอธิบายว่าไม่ว่าจะเกิดเป็นชายหรือหญิง ก็จะเริ่มจากการเป็นกลละ แล้วโตขึ้นทีละน้อย เมื่อถึง 7

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย จากสูตรของเส้นรอบวง คือ 2r ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2 และครึ่งวงกลมยาว   จุดปลายส่วนโค้ง   จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง   จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว

โจทย์ปัญหาบวก ลบ ทศนิยม

บทความนี้จะยกตัวอย่างโจทย์ปัญหาการบวกลบทศนิยม เพื่อให้น้องๆได้ทำความเข้าใจและศึกษาการแสดงวิธีคิด หากต้องไปเจอการแก้โจทย์ปัญหาในห้องเรียนจะสามารถนำความรู้จากบทความนี้ไปใช้ให้เกิดประโยชน์อย่างสูงสุด

โคลงอิศปปกรณำ

โคลงอิศปปกรณำ วรรณคดีร้อยแก้วที่แปลมาจากนิทานตะวันตก

ในบทเรียนก่อนหน้า น้อง ๆ ได้เรียนรู้เรื่องโคลงโสฬสไตรยางค์กับโคลงนฤทุมนาการกันไปแล้ว แต่โคลงสุภาษิตที่น้อง ๆ ชั้นมัธยมศึกษาปีที่ 2 จะได้เรียนไม่ได้หมดแค่นั้นนะคะ เพราะยังมีอีกหนึ่งโคลงสุภาษิตที่สำคัญไม่แพ้กันเลยคือ โคลงอิศปปกรณำ นั่นเองค่ะ โคลงสุภาษิตที่ชื่อดูอ่านยากเรื่องนี้จะมีที่มาอย่างไร สอนเรื่องอะไรเราบ้าง มีเนื้อหาอย่างไร ให้ข้อคิดแบบไหน ไปเรียนรู้พร้อมกันเลยค่ะ   ความหมายของ โคลงอิศปปกรณำ     โคลงอิศปปกรณำ อ่านว่า โคลง-อิด-สะ-ปะ-ปะ-กะ-ระ-นำ

ปก short answer questions

Short question and Short answer

  สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้ครูจะพาไปตะลุยตัวอย่างและวิธีการแต่งประโยคคำถาม ของเรื่อง “Short question and Short answer“ การถามตอบคำถามแบบสั้น หากพร้อมแล้วก็ไปลุยกันเลยจร้า   ความหมาย Short question and Sho rt answer คือการถามตอบแบบสั้นหรือส่วนใหญ่แล้วมักขึ้นต้นคำถามด้วยกริยาช่วย และได้คำตอบขนาดสั้น เช่น Yes, I

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1