ดีเทอร์มิแนนต์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ \inline \left | A \right |

โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก

**ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 2×2

ดีเทอร์มิแนนต์

หลักการจำคือ คูณลง ลบ คูณขึ้น

เช่น

ดีเทอร์มิแนนต์

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 3×3

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ 3×3 จะซซับซ้อนกว่า 2×2 นิดหน่อย แต่ยังใช้หลักการเดิมคือ คูณลง ลบ คูณขึ้น และสิ่งที่เพิ่มมาก็คือ การเพิ่มจำนวนหลักเข้าไปอีก 2 หลัก ซึ่งหลักที่เพิ่มนั้นก็คือค่าของ 2 หลักแรกนั่นเอง

ดีเทอร์มิแนนต์

 

ตัวอย่างเมทริกซ์ขนาด 3×3

ดีเทอร์มิแนนต์

 

สมบัติเกี่ยวกับ ดีเทอร์มิแนนต์

ให้ A, B เป็นเมทริกซ์ขนาด n×n

1.) \inline \mathrm{det(A)=det(A^t)}  โดยที่ \inline \mathrm{A^t} คือ เมทริกซ์สลับเปลี่ยน

2.) ถ้า สมาชิกแถวใดแถวหนึ่ง (หรือหลักใดหลักหนึ่ง) เป็น 0 ทุกตัว จะได้ว่า \inline \mathrm{det(A)=0}

เช่น

ดีเทอร์มิแนนต์

3.) ถ้า B คือเมทริกซ์ที่เกิดจากการสลับแถว (หรือหลัก) ของ A เพียงคู่เดียว จะได้ว่า \inline \mathrm{det(B)=-det(A)}

เช่น

ดีเทอร์มิแนนต์

4.) ถ้า B เกิดจากการคูณค่าคงตัว c ในสมาชิกแถวใดแถวหนึ่ง (หลักใดหลักหนึ่ง) ของ A จะได้ว่า \inline \mathrm{det(B)=cdet(A)}

เช่น

5.) \inline \mathrm{det(AB)=det(A)det(B)}

6.) \inline \mathrm{det(I_n)=1}  และ  \mathrm{det(\underbar{0})=0}

7.) \mathrm{det(A^n)=(det(A))^n}

เช่น

8.)  A เป็นเมทริกซ์เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)=0}

9.) A เป็ยเมทริกซ์ไม่เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)\neq 0}

10.) ถ้า A เป็นเมทริกซ์ไม่เอกฐาน แล้วจะได้ว่า \inline \mathrm{det(A^{-1})=\frac{1}{det(A)}}

11.) ถ้า c เป็นค่าคงตัว จะได้ว่า \mathrm{det(cA)=c^ndet(A)}   (n คือมิติของเมทริกซ์ A)

เช่น

ดีเทอร์มิแนนต์

12.) สามเหลี่ยมล่าง และสามเหลี่ยมบน 

ถ้า สมาชิกที่อยู่ใต้เส้นทะแยงมุมหลัก (หรือบนเส้นทะแยงมุมหลัก) เป็น 0 ทุกตัว จะได้ว่า ค่าดีเทอร์มิแนนต์จะเท่ากับ ผลคูณของสมาชิกเส้นทะแยงมุมหลัก

เช่น

ดีเทอร์มิแนนต์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

อสมการค่าสัมบูรณ์

จากบทความที่ผ่านมา น้องๆได้ศึกษาเรื่องค่าสัมบูรณ์และการแก้อสมการไปแล้ว บทความนี้จะเป็นการเอาเนื้อหาของอสมการและค่าสัมบูรณ์มาปรับใช้ นั่นก็คือ เราจะแก้อสมการของค่าสัมบูรณ์นั่นเองค่ะ เรื่องอสมการค่าสัมบูรณ์น้องๆจะได้เจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลค่ะ ถ้าน้องๆเข้าใจหลักการและสมบัติของค่าสัมบูรณ์และอสมการน้องๆจะสามารถทำข้อสอบได้แน่นอน

การบอกลักษณะต่างๆ โดยใช้คำคุณศัพท์ Profile

การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์ (Descriptive Adjective) กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ จำนวนตรงข้าม       “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)           

P5 NokAcademy_การเรียนเกี่ยวกับทิศทางและการถามทาง

การเรียนเกี่ยวกับทิศทางและการถามทาง

สวัสดีค่ะนักเรียนป.5 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ  หากพร้อมแล้วก็ไปลุยกันเลย กับหัวข้อ การเรียนเกี่ยวกับทิศทางและการถามทาง   มาเริ่มกับการ “ถาม-ตอบเกี่ยวกับทิศทาง”   วิธีการถามตอบ: โครงสร้าง:  How can I get to…(name of the place)..? แปล

โจทย์ปัญหาเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง          เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้ ตัวอย่างที่ 1 – 3 ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1