การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐

สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x + 3y – 15 = 0, x + y – 1 = 0, x – 2y = 3   เป็นต้น

รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร

เรียก y = ax + b ว่า รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร ซึ่งอาจเขียนในรูป y = mx + b โดยที่  a หรือ m  คือ ความชันของเส้นตรง

1. เมื่อ m > 0         กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมแหลมกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

ความชันของกราฟเส้นตรง 01

2. เมื่อ m < O        กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมป้านกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

มุมป้าน ความชันของกราฟเส้นตรง 01

3. เมื่อ m = 0            กราฟจะมีลักษณะเป็นเส้นตรงที่ขนานกับแกน X

ขนานแกน X ระบบสมการเชิงเส้นสองตัวแปร 03

รูปทั่วไปของสมการเชิงเส้นสองตัวแปร  คือ Ax + By + C = 0  เมื่อ x, y เป็นตัวแปร และ A, B, C  เป็นค่าคงตัว  โดยที่ A และ B  ไม่เท่ากับศูนย์พร้อมกัน กราฟของสมการนี้จะเป็นเส้นตรง เรียกว่า กราฟเส้นตรง

กราฟของระบบสมการเชิงเส้นสองตัวแปร

กราฟของระบบสมการจะมีลักษณะ ดังนี้

  1. กราฟของสมการทั้งสองตัดกันที่จุดจุดหนึ่ง ซึ่งจุดนั้นจะเป็นคำตอบของระบบสมการ โดยแสดงค่าของ x และ y ดังรูป

ระบบสมการเชิงเส้นสองตัวแปร 1

2. กราฟของสมการทั้งสองขนานกัน ซึ่งไม่มีคำตอบของระบบสมการ

ระบบสมการเชิงเส้นสองตัวแปร 2

  1. กราฟของสมการทั้งสองทับกันเป็นเส้นตรงเดียวกัน ซึ่งคำตอบของระบบสมการมีมากมายหลายคำตอบ โดยค่าของ x และ y ที่อยู่บนเส้นตรงนั้น

ระบบสมการเชิงเส้นสองตัวแปร 3

การใช้กราฟหาคำตอบของระบบสมการเชิงเส้นสองตัวแปร

ตัวอย่างที่ 1  จงหาคำตอบของระบบสมการต่อไปนี้โดยใช้กราฟ พร้อมทั้งระบุว่าระบบสมการนั้น มี 1 คำตอบ  มีหลายคำตอบ  หรือไม่มีคำตอบ

1)  2x + y = 11

y – x = 8

วิธีทำ    2x + y = 11   ⇒    y = 11 – 2x   

y – x = 8    ⇒    y = 8 + x 

จาก   y = 11 – 2x

แทน x = 2 จะได้  y = 11 – 2(2) = 11 – 4 = 7         (2,7)

แทน x = 0 จะได้  y = 11 – 2(0) = 11 – 0 = 11       (0,11)

แทน x = -2 จะได้  y = 11 – 2(-2) = 11 + 4 = 15    (-2,15)

จาก   y = 8 + x 

แทน x = 2 จะได้  y = 8 + 2 = 10     (2,10)

แทน x = 0 จะได้    y = 8 + 0 = 8    (0,8)

แทน x = -2 จะได้    y = 8 – 2 = 6  ⇒  (-2,6)

ระบบสมการเชิงเส้นสองตัวแปร 4

จะเห็นว่า กราฟของระบบสมการตัดกันที่จุด (1,9)

ดังนั้น คำตอบของระบบสมการมี 1 คำตอบ คือ (1,9)

2) 2y 4x   = 6

x − 2y = 4

วิธีทำ    2y 4x   = 6   ⇒    y = (6 + 4x) ÷ 2 = 3 + 2x

x − 2y = 4  ⇒    y = 4 + 2x

จาก   y = 3 + 2x

แทน x = 1 จะได้  y = 3 + 2(1) = 3 + 2 = 5      (1,5)

แทน x = 0 จะได้   y = 3 + 2(0) = 3 + 0 = 3    (0,3)

แทน x = -1 จะได้   y = 3 + 2(-1) = 3 – 2 = 1    (-1,1)

จาก   y = 4 + 2x

แทน x = 1  จะได้   y = 4 + 2(1) = 4 + 2 = 6     (1,6)

แทน x = 0  จะได้    y = 4 + 2(0) = 4 + 0 = 4     (0,4)

แทน x = -1  จะได้   y = 4 + 2(-1) = 4 – 2 = 2     (-1,2)

ระบบสมการเชิงเส้นสองตัวแปร 5

จะเห็นว่า กราฟทั้งสองขนานกัน จึงไม่มีโอกาสตัดกัน

ดังนั้น ระบบสมการไม่มีคำตอบ

3)  x – y = 5

y – x  = -5

วิธีทำ     x – y = 5  ⇒    y = x – 5

y – x  = -5   ⇒   y = -5 + x

จาก   y = x – 5

แทน x = 1 จะได้  y = 1 – 5 = -4    (1,-4)

แทน x = 0 จะได้  y = 0 – 5 = -5    (0,-5)

แทน x = -1 จะได้ y = -1 – 5 = -6    (-1,-6)

จาก  y = -5 + x

แทน x = 1  จะได้   y = -5 + 1 = -4     (1,-4)

แทน x = 0  จะได้  y = -5 + 0 = -5     (0,-5)

แทน x = -1  จะได้  y = -5 – 1 = -6     (-1,-6)

ระบบสมการเชิงเส้นสองตัวแปร 6

จะเห็นว่า กราฟทั้งสองทับกันสนิท

ดังนั้น ระบบสมการมีหลายคำตอบ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ารแก้ระบบสมการเชิงเส้นสองตัวแปรโดยใช้ อาจไม่สะดวกมากนัก เนื่องจากเสียเวลามาก และในบางครั้งคำตอบที่ได้จากกราฟ อาจพิจารณาหาคำตอบได้ยากอาจมีความคลาดเคลื่อนได้บ้าง จึงต้องอาศัยวิธีการอื่นในการแก้ระบบสมการเชิงเส้นสองตัวแปร ซึ่งจะได้เรียนในลำดับถัดไป

วิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มนุสสภูมิ ตอนที่ว่าด้วยกำเนิดของมนุษย์ในไตรภูมิพระร่วง

ไตรภูมิพระร่วงมีจุดมุ่งหมายที่จะชี้ให้เห็นคุณและโทษของโลกทั้งสามที่ไม่แน่นอน เพื่อที่จะให้มนุษย์ตระหนักถึงกรรมดีและกรรมชั่วและพบกับความสุขไม่ว่าจะอยู่ในโลกไหน โดยในตอน มนุสสภูมิ นี้ก็ได้กล่าวถึงการกำเนิดมนุษย์ที่อธิบายโดยใช้หลักความเชื่อทางพุทธศาสนามาอธิบายจึงทำให้วรรณคดีเรื่องนี้เป็นอีกเรื่องที่มีความสนใจเป็นอย่างมากเลยล่ะค่ะ จากที่ครั้งก่อนเราได้เรียนเรื่องนี้กันไปแล้วในส่วนของที่มาและความสำคัญและเนื้อเรื่องย่อ บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้เพิ่มเติมแต่เป็นเรื่องของตัวบทเพื่อถอดคำประพันธ์ รวมไปถึงศึกษาคุณค่าที่ปรากฏในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูกันเลย ตัวบทเด่น ๆ ในไตรภูมิพระร่วง ตอน มนุสสภูมิ     ถอดความ เป็นการอธิบายถึงวิวัฒนาการของทารกในครรภ์ตั้งแต่เริ่มเป็นเซลล์ โดยอธิบายว่าไม่ว่าจะเกิดเป็นชายหรือหญิง ก็จะเริ่มจากการเป็นกลละ แล้วโตขึ้นทีละน้อย เมื่อถึง 7

เรียนรู้และทำความเข้าใจเรื่องประโยคซับซ้อนอย่างง่าย

น้อง ๆ หลายคนคงจะรู้โครงสร้างของประโยคกันอยู่แล้ว คือจะมีประธาน กริยา กรรม เป็นส่วนประกอบ แต่ในชีวิตจริงเราไม่ได้พูดกันตามโครงสร้างเสมอไป เพราะจะมีส่วนขยายมาเพิ่มความมากขึ้นเพื่อให้ผู้พูดและผู้รับฟังสื่อสารกันได้อย่างเข้าใจมากขึ้นจนบางครั้งก็อาจทำให้ดูซับซ้อนจนไม่รู้ว่าเป็นประโยคแบบไหนและอะไรคือใจความสำคัญของประโยค บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับเรื่อง ประโยคซับซ้อน ทั้งประโยคความเดียวซับซ้อน ประโยคความรวมซับซ้อน และประโยคความซ้อนซับซ้อน ประโยคแต่ละชนิดจะเป็นอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ประโยคเอย จงซับซ้อนยิ่งขึ้น !   ประโยคซับซ้อน

สำนวนนี้มีที่มา เรียนรู้ความหมายและที่มาของ สำนวนไทย

สำนวนไทย เป็นสิ่งที่คนรุ่นก่อนใช้ความคิดและประสบการณ์สั่งสอนลูกหลาน เกิดเป็นมรดกทางวัฒนธรรมด้านคติธรรมที่แสดงถึงความรุ่งเรืองทางภาษาของประเทศไทย บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้สำนวนไทยที่เห็นกันบ่อย ๆ แต่หลายคนอาจจะใช้ไม่ถูกต้อง ไม่รู้ความหมายที่ถูกต้อง พร้อมทั้งเรียนรู้ที่มาของสำนวนด้วย ถ้าพร้อมแล้วเราไปเรียนรู้กันเลยค่ะ   สำนวนไทย   สำนวนไทย หมายถึง ถ้อยคำที่คมคายซึ่งเป็นถ้อยคำที่ใช้พูดสื่อสารกันโดยมีความหมายที่กว้างและลึกซึ้ง เป็นความหมายโดยนัย ไม่ได้แปลตรงตัวเพื่อใช้เป็นคำพูดในเชิงสั่งสอน เตือนสติ มุ่งสอนใจหรือชี้แนะให้ประพฤติปฏิบัติตาม   ที่มาของสำนวนไทย   สำนวนไทยมีมูลเหตุและที่มาของการเกิดหลายประการ

สำนวนไทยที่เกี่ยวกับศาสนา

สำนวนไทยที่เกี่ยวกับศาสนา ศึกษาที่มาและคุณค่าในสำนวน

  สำนวนไทยที่เกี่ยวกับศาสนา มีอยู่มากมายเลยทีเดียวค่ะ เพราะพุทธศาสนา เป็นศาสนาที่อยู่คู่บ้านคู่เมืองเรามาตั้งแต่อดีตกาล ทำให้มีความเกี่ยวโยงไปถึงสำนวน ซึ่งเป็นเหมือนถ้อยคำที่ใช้สั่งสอนและให้ข้อคิดแก่ผู้คนมายุคต่อยุค บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงสำนวนไทยที่เกี่ยวกับศาสนา และคุณค่าที่อยู่ในสำนวน ถ้าพร้อมแล้ว ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   สำนวนไทยที่เกี่ยวกับศาสนา   สำนวนไทยที่เกี่ยวกับศาสนา มาจากความเชื่อเรื่องศาสนาพุทธของคนไทย โดยความหมายของสำนวนจะมีทั้งสำนวนที่ยังมีเค้าของความหมายเดิม และสำนวนที่ความหมายเปลี่ยนไป   ตัวอย่างสำนวนไทยที่เกี่ยวกับศาสนา  

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

โคลงโลกนิติ ประวัติความเป็นมาและเรื่องย่อ

โคลงโลกนิติ เป็นคำโคลงที่ถูกแต่งไว้ตั้งแต่สมัยกรุงศรีอยุธยา ดูจากช่วงเวลาแล้ว น้อง ๆ หลายคนคงจะสงสัยว่าเหตุใดบทประพันธ์ที่มีมาตั้งแต่ยุคก่อนโน้น ยังถูกนำมาเป็นบทเรียนให้คนรุ่นหลังสมัยนี้ศึกษาอยู่ โคลงโลกนิติเป็นบทประพันธ์แบบใด ถึงได้รับการอนุรักษ์ไว้มาอย่างยาวนาน วันนี้เรามาเรียนรู้ถึงประวัติความเป็นมาและเรื่องย่อของโคลงโลกนิติกันค่ะ โคลงโลกนิติ ประวัติและความเป็นมา โคลงโลกนิติเป็นบทประพันธ์ที่มีมาตั้งแต่สมัยกรุงศรีอยุธยา ไม่ปรากฏนามผู้แต่งที่ชัดเจน เนื่องจากเป็นสุภาษิตเก่าที่ถูกนำมาร้อยเรียงเป็นคำโคลง ต่อมา เมื่อถึงสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่หัว ทรงปฏิสังขรณ์วัดพระเชตุพนวิมลมังคลาราม (วัดโพธ์) และประสงค์ให้มีการนำโคลงโลกนิติมาจารึกลงแผ่นศิลาติดไว้เป็นธรรมทาน เพื่อที่ประชาชนจะได้ศึกษาคติธรรมจากบทประพันธ์   ผู้แต่งโคลงโลกนิติ เดิมทีไม่มีปรากฏชื่อผู้แต่งที่ชัดเจนและไม่มีหลักฐานยืนว่าโคลงโลกนิติถูกแต่งขึ้นเมื่อไหร่ แต่นักวรรณคดีศึกษาคาดว่าโคลงโลกนิติแพร่หลายในสมัยกรุงศรีอยุธยา

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1