ระบบจำนวนจริง

ระบบจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบจำนวนจริง

“ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ

โครงสร้าง ระบบจำนวนจริง

มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น

 

โครงสร้าง

ระบบจำนวนจริง

 

 

จำนวนจริง

จำนวนจริงคือจำนวนที่ประกอบไปด้วย จำนวนตรรกยะและจำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ \mathbb{R} 

 

จำนวนเต็ม

จำนวนนับหรือจำนวนเต็มบวก เขียนแทนด้วยสัญลักษณ์ \mathbb{N} หรือ I^+ คือจำนวนที่เอาไว้ใช้นับสิ่งต่างๆ

เซตของจำนวนนับเป็นเซตอนันต์ นั่นคือ ระบบจำนวนจริง = {1,2,3,…}

จำนวนเต็มศูนย์ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง มีสมาชิกเพียงตัวเดียว คือ I^0 = {0}

จำนวนเต็มลบ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง  คือ ตัวผกผันการบวกของจำนวนนับ ซึ่งตัวผกผัน คือตัวที่เมื่อนำมาบวกกับจำนวนนับจะทำให้ผลบวก เท่ากับ 0 เช่น จำนวนนับคือ 2 ตัวผกผันก็คือ -2 เพราะ 2+(-2) = 0 สมาชิกของเซตของจำนวนเต็มลบมีจำนวนเป็นอนันต์ นั่นคือ I^- = {…,-3,-2,-1}

จำนวนตรรกยะ

จำนวนตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็มได้ ซึ่งก็คือ ตัวเศษและตัวส่วนจะต้องเป็นจำนวนเต็มเท่านั้น (เต็มบวก, เต็มลบ) เช่น  \frac{1}{2}  จะเห็นว่า ตัวเศษคือ 1 ตัวส่วนคือ 2 ซึ่งทั้ง 1 และ 2 เป็นจำนวนเต็ม และจำนวนตรรกยะยังสามารถเขียนในรูปทศนิยมซ้ำได้อีกด้วย เช่น 3.\dot{3} เป็นต้น

น้องๆสงสัยไหมว่าทำไมจำนวนเต็มถึงอยู่ในจำนวนตรรกยะ?? 

ลองสังเกตตัวอย่างต่อไปนี้ดูค่ะ

-3, 2, 0

-3 เกิดจากอะไรได้บ้าง >>> \frac{-3}{1}, \frac{3}{-1}, \frac{-6}{2}  , … จะเห็นว่าเศษส่วนที่ยกตัวอย่างมานี้ มีค่าเท่ากับ -3 และเศษส่วนเหล่านี้เป็นจำนวนตรรกยะ

2 เกิดจากอะไรได้บ้าง >>> ระบบจำนวนจริง, … จะเห็นว่า 2 สามารถเขียนเป็นเศษส่วนของจำนวนเต็มได้

0 เกิดจากเศษส่วนได้เช่นกัน เพราะ 0 ส่วนอะไรก็ได้ 0  ยกเว้น!!! ระบบจำนวนจริง เศษส่วนนี้ไม่นิยามนะคะ 

ดังนั้น จำนวนเต็มเป็นจำนวนตรรกยะ

ข้อควรระวัง  ตัวเศษสามารถเป็นจำนวนเต็มอะไรก็ได้ แต่!! ตัวส่วนต้องไม่เป็น 0 นะจ๊ะ

เช่น  ระบบจำนวนจริง แบบนี้ถือว่าไม่เป็นจำนวนตรรกยะนะคะ

 

จำนวนอตรรกยะ

จำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มได้ 

เช่น ทศนิยมไม่รู้จบ 1.254545782268975456… , \sqrt{2}, \sqrt{3} เป็นต้น

**√¯ อ่านว่า square root เป็นสัญลักษณ์แทนค่ารากที่ 2 

เช่น 

ระบบจำนวนจริง คือ รากที่ 2 ของ 2 หมายความว่า ถ้านำ \sqrt{2} × \sqrt{2} แล้วจะเท่ากับ 2 

\sqrt{3} คือ รากที่ 2 ของ 3 หมายความว่า ถ้านำ ระบบจำนวนจริง × \sqrt{3} แล้วจะเท่ากับ 3 

สรุปก็คือ รากที่ 2 คือ ตัวที่นำมายกกำลัง 2 แล้วทำให้ square root หายไป

 

ตัวอย่าง ระบบจำนวนจริง

พิจารณาจำนวนต่อไปนี้ แล้วตอบคำถามว่าจำนวนนั้นเป็นจำนวนตรรกยะ, อตรรกยะ, จำนวนจริง

1.) 1.5 

แนวคำตอบ 1.5 สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะ และจำนวนตรรกยะอยู่ในเซตของจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

2.) ระบบจำนวนจริง 

แนวคำตอบ 1.\dot{3} เป็นทศนิยมที่ซ้ำ 3 ซึ่งก็คือ 1.33333333… ไปเรื่อยๆ และสามารถเขียนเป็นเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.\dot{3} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

3.) π 

แนวคำตอบ π = 3.14159265358979323846264338327950288420…. จะเห็นว่าเป็นเลขทศนิยมไม่ซ้ำและไม่สิ้นสุด ดังนั้น π เป็นจำนวนอตรรกยะ

และเนื่องจาก จำนวนอตรรกยะก็อยู่ในเซตของจำนวนจริง

ดังนั้น  π เป็นจำนวนอตรรกยะและจำนวนจริง

 

4.) \sqrt{5} 

เนื่องจาก \sqrt{5} ไม่ใช่จำนวนเต็ม และไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มที่ส่วนไม่เป็น 0 ได้ และไม่สามารถเขียนในรูปทศนิยมซ้ำได้ 

ดังนั้น \sqrt{5} เป็นจำนวนอตรรกยะและเป็นจำนวนจริง

 

5.) \sqrt{16}

เนื่องจาก \sqrt{16} = ระบบจำนวนจริง = 4 และ 4 เป็นจำนวนเต็ม

ดังนั้น  \sqrt{16} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

6.) \sqrt{25}

เนื่องจาก \sqrt{25} = \sqrt{5}\times \sqrt{5} = 5 

ดังนั้น \sqrt{25} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

วีดิโอ ระบบจำนวนจริง

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้กลวิธีการสรรคำ ความสวยงามทางภาษา

ในการแต่งบทประพันธ์ประเภทต่าง ๆ โดยเฉพาะบทร้อยกรอง การสรรคำ จะช่วยทำให้บทประพันธ์นั้น ๆ มีความไพเราะมากขึ้น บทเรียนเรื่องการเสริมสร้างความรู้ทางภาษาไทยในวันนี้จะพาน้อง ๆ ไปศึกษาเกี่ยวกับการสรรคำ ว่ามีความหมายและวิธีการเลือกคำมาใช้อย่างได้บ้าง ไปดูกันเลยค่ะ   การสรรคำ ความหมายและความสำคัญ     การสรรคำ คือ การเลือกใช้คำให้สื่อความคิด ความเข้าใจ ความรู้สึก และอารมณ์ได้อย่างงดงาม โดยคำนึงถึงความงามด้านเสียง โวหาร

ป.5เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นมป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลยค่า Let’s go! ความหมาย   Present แปลว่า ปัจจุบัน  Simple แปลว่า ธรรมดา ส่วน Tense นั้น แปลว่ากาล ดังนั้น

บทละครพูดเรื่องเห็นแก่ลูก

ศึกษาตัวบทและคุณค่าที่อยู่ใน บทละครพูดเรื่องเห็นแก่ลูก

บทละครพูดเรื่องเห็นแก่ลูก เป็นบทละครพูดเรื่องแรกของไทยที่พระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัวเป็นผู้ประพันธ์ โดยมุ่งหวังให้ละครเป็นตัวช่วยกล่อมเกลาจิตใจประชาชน แต่นอกจากตัวบทจะมีความโดดเด่นจนได้รับความนิยมอย่างมากแล้ว ยังแฝงแนวคิดมากมายไว้ในเรื่อง จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้เรื่องพร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ใน บทละครพูดเรื่องเห็นแก่ลูก     ตัวบทที่ 1    พระยาภักดี : ใครวะ อ้ายคำ : อ้างว่าเป็นเกลอเก่าของใต้เท้า

ป.5 การใช้ V. to be กับคำนามเอกพจน์ และพหูพจน์

การใช้กริยา V. to be กับคำนามเอกพจน์ และพหูพจน์

สวัสดีค่ะนักเรียนที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้กริยา be กับคำนามเอกพจน์ และพหูพจน์ กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! รู้จักกับ V. to be   V. to be แปลว่า เป็น อยู่ คือ หลัง verb to

การเปลี่ยนแปลงคำ เรียนรู้วิวัฒนาการทางภาษาที่ไม่เคยหยุดนิ่ง

ภาษาเป็นเครื่องมือที่มนุษย์ใช้สื่อสารกัน แต่ในเมื่อสังคมมนุษย์ไม่สามารถหยุดนิ่งได้ และมีความเจริญทางวิทยาการใหม่ ๆ เข้ามาอยู่เสมอ ทำให้เกิดการเปลี่ยนแปลงทางภาษามากมาย การเปลี่ยนแปลงคำ เป็นการเปลี่ยนแปลงที่เกิดขึ้นในธรรมชาติของมนุษย์ จากครั้งที่แล้วที่เราได้เรียนรู้เกี่ยวกับการเปลี่ยนแปลงของประโยคกันไป บทเรียนในวันนี้จะพาน้อง ๆ เจาะลึกอีกหนึ่งการเปลี่ยนแปลงซึ่งก็คือการเปลี่ยนแปลงคำว่ามีอะไรกันบ้าง และมีคำใดที่เคยใช้ในสมัยโบราณแต่ปัจจุบันเลิกใช้ไปแล้ว ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การเปลี่ยนแปลงคำ   เกิดจากการเปลี่ยนแปลงของภาษาพูดและเขียนเมื่อถูกใช้ต่อกันมาเรื่อย ๆ ลักษณะของการเปลี่ยนแปลงคำต่าง ๆ สามารถแบ่งได้ดังนี้     1.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1