ระบบจำนวนจริง

ระบบจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบจำนวนจริง

“ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ

โครงสร้าง ระบบจำนวนจริง

มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น

 

โครงสร้าง

ระบบจำนวนจริง

 

 

จำนวนจริง

จำนวนจริงคือจำนวนที่ประกอบไปด้วย จำนวนตรรกยะและจำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ \mathbb{R} 

 

จำนวนเต็ม

จำนวนนับหรือจำนวนเต็มบวก เขียนแทนด้วยสัญลักษณ์ \mathbb{N} หรือ I^+ คือจำนวนที่เอาไว้ใช้นับสิ่งต่างๆ

เซตของจำนวนนับเป็นเซตอนันต์ นั่นคือ ระบบจำนวนจริง = {1,2,3,…}

จำนวนเต็มศูนย์ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง มีสมาชิกเพียงตัวเดียว คือ I^0 = {0}

จำนวนเต็มลบ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง  คือ ตัวผกผันการบวกของจำนวนนับ ซึ่งตัวผกผัน คือตัวที่เมื่อนำมาบวกกับจำนวนนับจะทำให้ผลบวก เท่ากับ 0 เช่น จำนวนนับคือ 2 ตัวผกผันก็คือ -2 เพราะ 2+(-2) = 0 สมาชิกของเซตของจำนวนเต็มลบมีจำนวนเป็นอนันต์ นั่นคือ I^- = {…,-3,-2,-1}

จำนวนตรรกยะ

จำนวนตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็มได้ ซึ่งก็คือ ตัวเศษและตัวส่วนจะต้องเป็นจำนวนเต็มเท่านั้น (เต็มบวก, เต็มลบ) เช่น  \frac{1}{2}  จะเห็นว่า ตัวเศษคือ 1 ตัวส่วนคือ 2 ซึ่งทั้ง 1 และ 2 เป็นจำนวนเต็ม และจำนวนตรรกยะยังสามารถเขียนในรูปทศนิยมซ้ำได้อีกด้วย เช่น 3.\dot{3} เป็นต้น

น้องๆสงสัยไหมว่าทำไมจำนวนเต็มถึงอยู่ในจำนวนตรรกยะ?? 

ลองสังเกตตัวอย่างต่อไปนี้ดูค่ะ

-3, 2, 0

-3 เกิดจากอะไรได้บ้าง >>> \frac{-3}{1}, \frac{3}{-1}, \frac{-6}{2}  , … จะเห็นว่าเศษส่วนที่ยกตัวอย่างมานี้ มีค่าเท่ากับ -3 และเศษส่วนเหล่านี้เป็นจำนวนตรรกยะ

2 เกิดจากอะไรได้บ้าง >>> ระบบจำนวนจริง, … จะเห็นว่า 2 สามารถเขียนเป็นเศษส่วนของจำนวนเต็มได้

0 เกิดจากเศษส่วนได้เช่นกัน เพราะ 0 ส่วนอะไรก็ได้ 0  ยกเว้น!!! ระบบจำนวนจริง เศษส่วนนี้ไม่นิยามนะคะ 

ดังนั้น จำนวนเต็มเป็นจำนวนตรรกยะ

ข้อควรระวัง  ตัวเศษสามารถเป็นจำนวนเต็มอะไรก็ได้ แต่!! ตัวส่วนต้องไม่เป็น 0 นะจ๊ะ

เช่น  ระบบจำนวนจริง แบบนี้ถือว่าไม่เป็นจำนวนตรรกยะนะคะ

 

จำนวนอตรรกยะ

จำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มได้ 

เช่น ทศนิยมไม่รู้จบ 1.254545782268975456… , \sqrt{2}, \sqrt{3} เป็นต้น

**√¯ อ่านว่า square root เป็นสัญลักษณ์แทนค่ารากที่ 2 

เช่น 

ระบบจำนวนจริง คือ รากที่ 2 ของ 2 หมายความว่า ถ้านำ \sqrt{2} × \sqrt{2} แล้วจะเท่ากับ 2 

\sqrt{3} คือ รากที่ 2 ของ 3 หมายความว่า ถ้านำ ระบบจำนวนจริง × \sqrt{3} แล้วจะเท่ากับ 3 

สรุปก็คือ รากที่ 2 คือ ตัวที่นำมายกกำลัง 2 แล้วทำให้ square root หายไป

 

ตัวอย่าง ระบบจำนวนจริง

พิจารณาจำนวนต่อไปนี้ แล้วตอบคำถามว่าจำนวนนั้นเป็นจำนวนตรรกยะ, อตรรกยะ, จำนวนจริง

1.) 1.5 

แนวคำตอบ 1.5 สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะ และจำนวนตรรกยะอยู่ในเซตของจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

2.) ระบบจำนวนจริง 

แนวคำตอบ 1.\dot{3} เป็นทศนิยมที่ซ้ำ 3 ซึ่งก็คือ 1.33333333… ไปเรื่อยๆ และสามารถเขียนเป็นเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.\dot{3} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

3.) π 

แนวคำตอบ π = 3.14159265358979323846264338327950288420…. จะเห็นว่าเป็นเลขทศนิยมไม่ซ้ำและไม่สิ้นสุด ดังนั้น π เป็นจำนวนอตรรกยะ

และเนื่องจาก จำนวนอตรรกยะก็อยู่ในเซตของจำนวนจริง

ดังนั้น  π เป็นจำนวนอตรรกยะและจำนวนจริง

 

4.) \sqrt{5} 

เนื่องจาก \sqrt{5} ไม่ใช่จำนวนเต็ม และไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มที่ส่วนไม่เป็น 0 ได้ และไม่สามารถเขียนในรูปทศนิยมซ้ำได้ 

ดังนั้น \sqrt{5} เป็นจำนวนอตรรกยะและเป็นจำนวนจริง

 

5.) \sqrt{16}

เนื่องจาก \sqrt{16} = ระบบจำนวนจริง = 4 และ 4 เป็นจำนวนเต็ม

ดังนั้น  \sqrt{16} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

6.) \sqrt{25}

เนื่องจาก \sqrt{25} = \sqrt{5}\times \sqrt{5} = 5 

ดังนั้น \sqrt{25} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

วีดิโอ ระบบจำนวนจริง

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนออนไลน์ คณิตศาสตร์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

NokAcademy_Past Tense และ Present Continuous Tense

เรียนรู้ เรื่อง Past Tense และ Present Continuous Tense

Hi guys! สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้ เรื่อง Past Tense และ Present Continuous Tense  ถ้าพร้อมแล้วก็ไปลุยกันโลด มาเริ่มกันกับ Past Tenses   ก่อนอื่นเราจะต้องรู้จักก่อนว่า การเล่าถึงงเหตุการณ์ในอดีตนั้นเราสามารถเล่าได้หลายแบบ ครูจะขอยกตัวอย่างจากสถาณการณ์การใช้ไปหาโครงสร้างและคำศัพท์ที่จำเป็นเพื่อให้เราเข้าใจความสำคัของ Tense นั้นๆ ร่วมกับเทคนิค “Situational usage”

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

กาพย์พระไชยสุริยา ศึกษาตัวบทที่น่าสนใจและคุณค่าที่อยู่ในเรื่อง

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นวรรณคดีที่ทรงคุณค่า เป็นแบบเรียนภาษาไทยที่มีมาแต่โบราณ นอกจากนี้ยังสอนเรื่องราวต่าง ๆ อีกมากมาก หลังจากที่ได้เรียนรู้เกี่ยวกับประวัติความเป็นมา ลักษณะคำประพันธ์และเนื้อเรื่องกันไปแล้ว เรื่องต่อไปที่น้อง ๆ จะได้เรียนรู้ก็คือตัวบทเด่น ๆ ที่น่าสนใจในเรื่องกาพย์พระไชยสุริยาค่ะ เรามาดูกันดีกว่านะคะว่าในกาพย์พระไชยสุริยาจะมีตัวบทไหนเด่น ๆ และมีคุณค่าอย่างไรบ้าง   ตัวบทที่น่าสนใจในกาพย์พระไชยสุริยา   ลักษณะคำประพันธ์ : กาพย์สุรางคนางค์ 28  

พระอภัยมณี ความเป็นมาและเรื่องย่อของวรรณคดีที่ดีที่สุดตลอดกาล

น้อง ๆ หลายคนคงจะรู้จักวรรณคดีเรื่อง พระอภัยมณี กันอยู่แล้วใช่ไหมคะ เพราะวรรณคดีที่แต่งโดยสุนทรภู่เรื่องนี้ถือว่าเป็นอีกเรื่องหนึ่งที่มีชื่อเสียงมาก ๆ เป็นต้นแบบในการเขียนกลอนและยังถูกไปนำดัดแปลงเป็นละคร ภาพยนตร์ และเพลงอีกมากมาย แต่ทราบไหมคะว่าเรื่องพระอภัยมณีนั้นแท้จริงแล้วมีที่มาอย่างไร ถ้าอยากรู้แล้วเราไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   พระอภัยมณี ความเป็นมา     พระอภัยมณีเป็นเรื่องที่สุนทรภู่แต่งขึ้นขณะติดคุกเพราะเมาสุราในสมัยรัชกาลที่ 2 ราว ๆ ปี พ.ศ.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1