สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-มุม-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 2ด้าน และ มุม 1มุม ในการพิสูจน์

ความเท่ากันทุกประการของรูปสามเหลี่ยม

บทนิยาม รูปสามเหลี่ยม ABC คือรูปที่ประกอบด้วยส่วนของเส้นตรงสามเส้น AB, BC และ AC เชื่อมต่อจุด A, B และ C ที่ไม่อยู่บนเส้นตรงเดียวกัน เรียกจุด A, B และ C ว่า “จุดยอดมุมรูปสามเหลี่ยม ABC”

สามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมเท่ากันทุกประการ

  1. AB = DE, AC = DF และ BC = EF
  2. <A = <D, <B = <E และ <C = <F

ลักษณะดังนี้คือ ด้านที่ยาวเท่ากัน มุมที่มีขนาดเท่ากัน หรือจุดที่ทับกันได้ เรียกว่า “สมนัยกัน”

ดังนั้น จะได้ว่ารูปสามเหลี่ยมสองรูปเท่ากันทุกประการเมื่อด้านและมุมของรูปสามเหลี่ยมมีขนาดเท่ากันเป็นคู่ๆ

ในทางกลับกัน เมื่อรูปสามเหลี่ยม ABC และรูปสามเหลี่ยม DEF มีด้านคู่ที่สมนัยกันยาวเท่ากันคือ AB = DE,
BC = EF และ CA = FD และมุมที่สมนัยกันมีขนาดเท่ากันคือ <A = <D, <B = <E และ <C= <F ดังรูป

สามเหลียมที่เท่ากัน

สรุปได้ว่า รูปสามเหลี่ยมสองรูปเท่ากันทุกประการก็ต่อเมื่อด้านคู่ที่สมนัยกันและมุมคู่ที่สมนัยกันของรูปสามเหลี่ยมทั้งสองรูปนั้นมีขนาดเท่ากันเป็นคู่ ๆ

จากรูปจะได้ว่า   AB สมนัยกับ XY

AC สมนัยกับ XY

BC สมนัยกับ YZ

<A สมนัยกับ <X

<B สมนัยกับ <Y

<C สมนัยกับ <Z

จากรูปจะได้ว่า   MN = PQ

MO = PR

ON = QR

<M = <P

<O = <R

<N = <Q

รูปสามเหลี่ยมที่สัมพันธ์กันแบบด้าน-มุม-ด้าน

ในกรณีที่ต้องการทราบว่าสามเหลี่ยมสองรูปใดเท่ากันทุกประการโดยไม่จำเป็นต้องยกมาทับกัน เราสามารถใช้หลักการทางเรขาคณิตในการพิสูจน์ โดยอาศัยค้านกับมุมที่เท่ากันสามคู่ทั้งนี้ต้องขึ้นอยู่กับกรณีที่เป็นไปได้และถือเป็นสัจพจน์ ดังต่อไปนี้

ถ้ารูปสามเหลี่ยมสองรูปใด ๆ มีด้านยาวเท่ากันสองคู่และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากันแล้ว ผลที่ตามมาคือ ด้านที่สมนัยที่เหลืออีก 1 คู่จะยาวเท่ากัน และมุมที่สมนัยกันที่เหลืออีก 2 คู่จะมีขนาดเท่ากันเป็นคู่ ๆ

สรุปได้ว่า

ถ้ารูปสามเหลี่ยมสองรูปมีความสัมพันธ์กันแบบด้าน-มุม-ด้าน (ด.ม.ด. ) กล่าวคือ มีด้านยาวเท่ากันสองคู่ และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากัน แล้วรูปสามเหลี่ยมสองรูปนั้นเท่ากันทุกประการ

พิสูจน์   เนื่องจาก            1) ด้าน BO = ด้าน OC (กำหนดให้)

2) มุม AOB =มุม AOC (ต่างเท่ากับ 90องศา)
3) ด้าน AO = ด้าน OA (เป็นด้านร่วม)

ดังนั้น สามเหลี่ยมABO เท่ากันทุกประการกับสามเหลี่ยมACO  (ด.ม.ด.)

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Definite & Indefinite Articles M1

Definite & Indefinite Articles

  Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า  = {2, 3, 8}

สมบัติของรูปสามเหลี่ยมมุมฉาก

สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

+ – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะพูดถึงขั้นตอนการหาคำตอบของการ + – × ÷ เศษส่วนและจำนวนคละระคน ซึ่งน้อง ๆ จะสามารถหาคำตอบ แสดงวิธีทำและหาคำตอบออกมาได้อย่างสมเหตุสมผล

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1