ทบทวนสมการเชิงเส้นตัวแปรเดียว

ในบทความนี้นักเรียนจะได้ทราบความหมายของสมการและสมบัติของการเท่ากันที่นำมาใช้ในการหาคำตอบของสมการ
ทบทวนสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จากบทความที่แล้วเราได้เกรินถึงหลักการเบื้องต้นของการแก้สมการเชิงเส้นตัวแปรเดียว วันนี้เราจึงจะมาทบทวนสมการเชิงเส้นตัวแปรเดียวกันอีกครั้ง พร้อมยกตัวอย่างและแสดงวิธีคิดให้น้องๆเข้าใจได้อย่างดี

ความหมายของสมการ

สมการ เป็นประโยคที่แสดงการเท่ากันของจำนวน โดยมีสัญลักษณ์( = ) บอกการเท่ากัน สมการอาจมีตัวแปรหรือไม่มีตัวแปรก็ได้ เช่น

สมการเชิงเส้นตัวแปรเดียว

ความหมายของสมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวเดียว เขียนอยู่ในรูป ax + b = 0 เมื่อ ax + b เป็นพหุนามดีกรี 1 มี x เป็นตัวแปร a , b เป็นค่าคงตัว และ a ≠  0

ตัวอย่างสมการเชิงเส้นตัวแปรเดียว

การแก้สมการ

การแก้สมการ คือ การหาคำตอบของสมการซึ่งทำให้สมการนั้นเป็นจริง ซึ่งต้องใช้สมบัติการเท่ากันซึ่งได้แก่ สมบัติสมมาตร สมบัติการถ่ายทอด สมบัติการบวก และสมบัติการคูณ

คำตอบของสมการ

คำตอบของสมการ คือจำนวนที่แทนค่าของตัวแปรในสมการแล้วทำให้สมการเป็นจริง เช่น

คำตอบของสมการ

การหาคำตอบของสมการนอกจากจะใช้วิธีลองหาจำนวนมาแทนค่าตัวแปรในสมการแล้ว เราจะใช้สมบัติของการเท่ากัน ได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวกและสมบัติการคูณ เพื่อช่วยในการหาคำตอบของสมการได้อีกวิธีหนึ่ง

สมบัติการเท่ากัน

1.สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใดๆ เราอาศัยสมบัติสมมาตรเขียนแสดงการเท่ากันของจำนวนได้สองแบบ ดังตัวอย่าง

1)            a + b = c         หรือ     c = a + b

2)            x – 3 = 2x + 7 หรือ     2x + 7 = x – 3

2.สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติถ่ายทอด ดังตัวอย่าง

1)            ถ้า x = 5 + 7 และ 5 + 7 = 12 แล้วจะสรุปได้ว่า x = 12

2)            ถ้า x = -3y และ -3y = 0.5 แล้วจะสรุปได้ว่า x = 0.5

3.สมบัติการบวก

ถ้า a = b แล้ว a + c = b + c เมื่อ a , b และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการบวก ดังตัวอย่าง

1)            ถ้า a = 5 แล้ว a + 3 = 5 + 3                             

2)            ถ้า x + 7 = 2 แล้ว ( x + 7 ) – 7 = 2 – 7            

4.สมบัติการคูณ

ถ้า a = b แล้ว ca = cb เมื่อ a , b  และ c แทนจำนวนจริงใดๆ เราใช้สมบัติการคูณ ดังตัวอย่าง

สมบัติการคูณ

คลิปตัวอย่างเรื่องทบทวนสมการเชิงเส้นตัวแปรเดียว

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย   กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า  = {2, 5,

ขุนช้างขุนแผน ตอน กำเนิดพลายงาม ถอดคำประพันธ์และเรียนรู้คุณค่าของวรรณคดี

จากที่บทเรียนคราวก่อนเราได้รู้ความเป็นมาและเรื่องย่อของตอนที่สำคัญอีกตอนหนึ่งของเรื่องอย่างตอน กำเนิดพลายงาม กันไปแล้ว บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกตัวบทที่น่าสนใจเพื่อถอดคำประพันธ์พร้อมทั้งศึกษาคุณค่าในเรื่อง น้อง ๆ จะได้รู้พร้อมกันว่าเหตุใดวรรณคดีเรื่อง ขุนช้างขุนแผน ถึงมีชื่อเสียงเป็นที่รู้จักแพร่หลายมาตั้งแต่อดีตจนถึงปัจจุบัน ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบท ขุนช้างขุนแผน ตอน กำเนิดพลายงาม     ถอดคำประพันธ์ : เป็นคำสอนของนางวันทองที่ได้สอนพลายงามก่อนที่จะต้องจำใจส่งลูกไปอยู่กับย่าที่กาญจนบุรีว่าเกิดเป็นผู้ชายต้องลายมือสวย โตขึ้นจะได้รับราชการก่อนจะพาพลายงามมาส่งด้วยความรู้สึกที่เหมือนใจสลาย    

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ บทความนี้ ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ ซึ่งการแก้โจทย์ปัญหานั้น น้องๆจะต้องอ่านทำความเข้าใจกับโจทย์ให้ละเอียด และพิจารณาอย่างรอบคอบว่าโจทย์กำหนดอะไรมาให้บ้างและโจทย์ต้องการให้หาอะไร จากนั้นจะสามารถหาค่าของสิ่งที่โจทย์ต้องการได้โดยใช้ความรู้เรื่องการคูณไขว้ สัดส่วน และร้อยละ ก่อนจะเรียนรู้เรื่องนี้ น้องๆจำเป็นต้องมีความรู้ในเรื่อง สัดส่วน เพิ่มเติมได้ที่  ⇒⇒ สัดส่วน ⇐⇐ โจทย์ปัญหาเกี่ยวกับสัดส่วน ตัวอย่างที่ 1  อัตราส่วนของอายุของนิวต่ออายุของแนน เป็น 2

เสภาขุนช้างขุนแผน

เสภาขุนช้างขุนแผน จากนิทานชาวบ้านสู่วรรณคดีราชสำนัก

เสภาเรื่องขุนช้างขุนแผน ได้รับการยกย่องจากวรรณคดีสโมสรว่าเป็นยอดของกลอนเสภาและเป็นที่ยอมรับกันในหมู่นักวรรณคดีว่าเป็นเลิศทั้งในด้านเนื้อเรื่องและการประพันธ์ มีมากมายหลายตอน หลายสำนวนและหลายผู้แต่ง แต่บทเรียนที่น้อง ๆ จะได้ศึกษากันในวันนี้เป็น เสภาขุนช้างขุนแผน ตอน ขุนช้างถวายฎีกา จะมีเนื้อหาและความเป็นมาอย่างไรเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ เสภาขุนช้างขุนแผน   ขุนช้างขุนแผนสันนิษฐานว่าเป็นเรื่องจริงที่เกิดขึ้นในสมัยอยุธยา จากพงศาวดารทำให้ทราบว่าขุนแผนรับราชการอยู่ในสมัยสมเด็จพระพันวษา หรือ สมเด็จพระรามาธิบดีที่ 2 ซึ่งครองราชย์ระหว่าง พ.ศ. 2034-พ.ศ 2072 ต่อมามีการนำเรื่องขุนช้างขุนแผนมาแต่งเป็นกลอนสุภาพและบทเสภาโดยใช้กรับเป็นเครื่องประกอบจังหวะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1