ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว

ระบบสมการเชิงเส้นสองตัวแปร เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้)

แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

เรามาดูนิยามของสมการเชิงเส้น n ตัวแปรกันค่ะ

 

บทนิยาม

สมการเชิงเส้น n ตัวแปร หมายถึง สมการที่เขียนอยู่ในรูป ระบบสมการเชิงเส้น โดยที่ \inline a_1,a_2,...,a_n,b\in \mathbb{R} และ \inline x_1,x_2,...,x_n เป็นตัวแปร

 

***สมการเชิงเส้น กับระบบสมการเชิงเส้นไม่เหมือนกันนะจ๊ะ***

โดยสมการเชิงเส้นคือ สมการเดี่ยวๆ 1 สมการ

แต่ระบบสมการเชิงเส้น คือ สมการหลายๆสมการ  เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

 

การรตรวจคำตอบของระบบสมการคือ การแทนค่า \inline x_1,x_2,...,x_n ที่เราหาได้ลงไปในสมการทุกสมการในระบบแล้วทำให้สมการเหล่านั้นเป็นจริง และการแก้สมการนั้นสมการอาจจะใช้วิธีการกำจัดตัวแปร (เหมาะสำหรับสมการที่ไม่เกิน 3 ตัวแปร)

ตัวอย่างการแก้สมการ

 

ตัวอย่างต่อไปนี้จะใช้วิธีการกำจัดตัวแปรในการแก้สมการพร้อมกับตรวจสอบคำตอบของระบบสมการ

1.) แก้ระบบสมการพร้อมตรวจคำตอบ

\inline 2x-3y+z=8   ——-(1)

\inline -x+4y+2z=-4   —(2)

\inline 3x-y+2z=9   ——-(3)

 

วิธีแก้สมการ

สังเกตสมการที่ 2 และ 3 เราสามารถกำจัด z ได้ โดยการนำ (3) – (2) จะได้

\inline 3x-y+2z-(-x+4y+2z)   =  \inline 9-(-4)

\inline 4x-5y                                            =  \inline 13  ——–(4)

จะเห็นว่าสมการที่ 4 ไม่มีตัวแปร z แล้ว ดังนั้นตอนนี้เรามีสมการ 2 ตัวแปรแล้ว 1 สมการ

ต้องทำสมการ 2 ตัวแปรอีก 1 สมการร เพื่อจะนำมาแก้สมการ 2 ตัวแปรได้

และตอนนี้สมการที่เรายังไม่ได้ยุ่งเลยคือสมการที่ 1 ดังนั้น เราจะกำจัดตัวแปรตัวแปร z โดยใช้สมการที่ 1 ช่วย

นำสมการที่ 1 คูณด้วย 2 ทั้งสมการ จะได้

ระบบสมการเชิงเส้น                   = \inline 2(8)

\inline 4x-6y+2z                      = \inline 16    ——–(5)

จะสังเกตเห็นว่าสามารถกำจัดตัวแปร z ได้แล้ว โดยนำไป ลบ สมการรที่ 2 หรือ 3 ก็ได้

ในที่นี้จะนำไปลบกับสมการที่ 3 นั่นคิอ (5) – (3) จะได้

ระบบสมการเชิงเส้น   =  \inline 16-9

ระบบสมการเชิงเส้น                                             =  \inline 7  ————(6)

ตอนนี้เราได้ สมการ 2 ตัวแปรมาอีกหนึ่งสมการแล้ว ทีนี้เราก็สามารถทำการแก้สมการ 2 ตัวแปรได้แล้ว

\inline 4x-5y                                            =  \inline 13  ——–(4)

\inline x-5y                                              =  \inline 7  ———(6)

(4) – (6)  จะได้

ระบบสมการเชิงเส้น                       =  \inline 13-7

\inline 3x                                                     =  \inline 6

\inline x                                                       =  \inline 2

แทน x = 2 ใน (6) จะได้

\inline 2-5y=7  ดังนั้น y = -1

แทนค่า x = 2 และ y = -1 ในสมการที่ 1 จะได้

ระบบสมการเชิงเส้น

\inline 4+3+z=8

ดังนั้น z = 1

 

วิธีการตรวจคำตอบ

แทน ค่า x, y และ z ที่ได้จากการแก้ระบบสมการ ลงไปในสมการที่ 1, 2 และ 3

(1)    ระบบสมการเชิงเส้น   สมการเป็นจริง

(2)   \inline -2+4(-1)+2(1)=-2-4+2=-4  เป็นจริง

(3)   \inline 3(2)-(-1)+2(1)=6+1+2=9  เป็นจริง

 

สรุปหลักการแก้ระบบสมการ 3 ตัวแปร โดยวิธีกำจัดตัวแปร

  1. กำจัดตัวแปรให้เหลือ 2 สมการ 2 ตัวแปร
  2. แก้สมการ 2 ตัวแปร
  3. นำค่าตัวแปรที่หาได้ทั้งสองค่าแทนในสมการที่มีสามตัวแปร เพื่อหาค่าของตัวแปรที่เหลือ
  4. ได้ค่าครบทั้งสามค่าแล้ว นำไปตรวจคำตอบ 

 

วิดีโอทบทวนเรื่อง ระบบสมการเชิงเส้น 2 ตัวแปร

(ในระดับมัธยมต้น)

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

conjunctions

เรียนรู้การใช้คำสันธาน (Conjunctions) ในภาษาอังกฤษ

สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับ Conjuctions หรือคำสันธานในภาษาอังกฤษ พร้อมวิธีการใช้คำสันธานในประโยคแบบเข้าใจง่ายๆ กันครับ

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

บทเสภาสามัคคีเสวก

บทเสภาสามัคคีเสวก ที่มาของกลอนเสภาอันทรงคุณค่า

บทเสภาสามัคคีเสวก   เมื่อเห็น บทเสภาสามัคคีเสวก ครั้งแรก เชื่อว่าต้องมีน้อง ๆ หลายคนต้องเผลออ่านคำว่า เสวก เป็น (สะ-เหวก) แน่ ๆ เลยใช่ไหมคะ แต่ที่จริงแล้วคำว่าเสวกนั้นต้องอ่านให้ถูกต้องว่า (เส-วก) ที่มีความหมายถึงผู้ใกล้ชิด เป็นยศของข้าราชการในราชสำนักนั่นเองค่ะ บทเรียนภาษาไทยในวันนี้ไม่เพียงแต่จะสอนอ่านให้ถูกต้อง แต่จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของเรื่องย่อวรรณคดีไทยอย่างบทเสภาสามัคคีเสวกกันอีกด้วย โดยจะเป็นเรื่องราวแบบไหน มีลักษณะคำประพันธ์และเรื่องย่ออย่างไรบ้าง เราไปศึกษาเรื่องนี้พร้อม

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์ ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ โดเมนของความสัมพันธ์ เรนจ์ของความสัมพันธ์ กราฟของความสัมพันธ์ ตัวผกผันของความสัมพันธ์   แบบฝึกหัด 1.) ถ้า (x, 5) = (3, x – y)

Present Cont

Present Continuous Tense

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง” Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และเทคนิคการจำและนำ Tense ไปใช้กันจร้า หากพร้อมแล้วก็ไปลุยกันเลย การใช้ Present Continuous Tense     อธิบายสิ่งที่กำลังเกิดขึ้นอยู่ในขณะนั้น เช่น Danniel is playing a football at

การแยกตัวประกอบ

การแยกตัวประกอบ

การแยกตัวประกอบ การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้ การแยกตัวประกอบ  โดยการคูณ  การแยกตัวประกอบ  โดยการหาร (หารสั้น)         ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1