ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว

ระบบสมการเชิงเส้นสองตัวแปร เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้)

แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

เรามาดูนิยามของสมการเชิงเส้น n ตัวแปรกันค่ะ

 

บทนิยาม

สมการเชิงเส้น n ตัวแปร หมายถึง สมการที่เขียนอยู่ในรูป ระบบสมการเชิงเส้น โดยที่ \inline a_1,a_2,...,a_n,b\in \mathbb{R} และ \inline x_1,x_2,...,x_n เป็นตัวแปร

 

***สมการเชิงเส้น กับระบบสมการเชิงเส้นไม่เหมือนกันนะจ๊ะ***

โดยสมการเชิงเส้นคือ สมการเดี่ยวๆ 1 สมการ

แต่ระบบสมการเชิงเส้น คือ สมการหลายๆสมการ  เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

 

การรตรวจคำตอบของระบบสมการคือ การแทนค่า \inline x_1,x_2,...,x_n ที่เราหาได้ลงไปในสมการทุกสมการในระบบแล้วทำให้สมการเหล่านั้นเป็นจริง และการแก้สมการนั้นสมการอาจจะใช้วิธีการกำจัดตัวแปร (เหมาะสำหรับสมการที่ไม่เกิน 3 ตัวแปร)

ตัวอย่างการแก้สมการ

 

ตัวอย่างต่อไปนี้จะใช้วิธีการกำจัดตัวแปรในการแก้สมการพร้อมกับตรวจสอบคำตอบของระบบสมการ

1.) แก้ระบบสมการพร้อมตรวจคำตอบ

\inline 2x-3y+z=8   ——-(1)

\inline -x+4y+2z=-4   —(2)

\inline 3x-y+2z=9   ——-(3)

 

วิธีแก้สมการ

สังเกตสมการที่ 2 และ 3 เราสามารถกำจัด z ได้ โดยการนำ (3) – (2) จะได้

\inline 3x-y+2z-(-x+4y+2z)   =  \inline 9-(-4)

\inline 4x-5y                                            =  \inline 13  ——–(4)

จะเห็นว่าสมการที่ 4 ไม่มีตัวแปร z แล้ว ดังนั้นตอนนี้เรามีสมการ 2 ตัวแปรแล้ว 1 สมการ

ต้องทำสมการ 2 ตัวแปรอีก 1 สมการร เพื่อจะนำมาแก้สมการ 2 ตัวแปรได้

และตอนนี้สมการที่เรายังไม่ได้ยุ่งเลยคือสมการที่ 1 ดังนั้น เราจะกำจัดตัวแปรตัวแปร z โดยใช้สมการที่ 1 ช่วย

นำสมการที่ 1 คูณด้วย 2 ทั้งสมการ จะได้

ระบบสมการเชิงเส้น                   = \inline 2(8)

\inline 4x-6y+2z                      = \inline 16    ——–(5)

จะสังเกตเห็นว่าสามารถกำจัดตัวแปร z ได้แล้ว โดยนำไป ลบ สมการรที่ 2 หรือ 3 ก็ได้

ในที่นี้จะนำไปลบกับสมการที่ 3 นั่นคิอ (5) – (3) จะได้

ระบบสมการเชิงเส้น   =  \inline 16-9

ระบบสมการเชิงเส้น                                             =  \inline 7  ————(6)

ตอนนี้เราได้ สมการ 2 ตัวแปรมาอีกหนึ่งสมการแล้ว ทีนี้เราก็สามารถทำการแก้สมการ 2 ตัวแปรได้แล้ว

\inline 4x-5y                                            =  \inline 13  ——–(4)

\inline x-5y                                              =  \inline 7  ———(6)

(4) – (6)  จะได้

ระบบสมการเชิงเส้น                       =  \inline 13-7

\inline 3x                                                     =  \inline 6

\inline x                                                       =  \inline 2

แทน x = 2 ใน (6) จะได้

\inline 2-5y=7  ดังนั้น y = -1

แทนค่า x = 2 และ y = -1 ในสมการที่ 1 จะได้

ระบบสมการเชิงเส้น

\inline 4+3+z=8

ดังนั้น z = 1

 

วิธีการตรวจคำตอบ

แทน ค่า x, y และ z ที่ได้จากการแก้ระบบสมการ ลงไปในสมการที่ 1, 2 และ 3

(1)    ระบบสมการเชิงเส้น   สมการเป็นจริง

(2)   \inline -2+4(-1)+2(1)=-2-4+2=-4  เป็นจริง

(3)   \inline 3(2)-(-1)+2(1)=6+1+2=9  เป็นจริง

 

สรุปหลักการแก้ระบบสมการ 3 ตัวแปร โดยวิธีกำจัดตัวแปร

  1. กำจัดตัวแปรให้เหลือ 2 สมการ 2 ตัวแปร
  2. แก้สมการ 2 ตัวแปร
  3. นำค่าตัวแปรที่หาได้ทั้งสองค่าแทนในสมการที่มีสามตัวแปร เพื่อหาค่าของตัวแปรที่เหลือ
  4. ได้ค่าครบทั้งสามค่าแล้ว นำไปตรวจคำตอบ 

 

วิดีโอทบทวนเรื่อง ระบบสมการเชิงเส้น 2 ตัวแปร

(ในระดับมัธยมต้น)

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การวัดพื้นที่ ม.2

ในบทความนี้เราจะได้เรียนรู้มาตราต่างๆของหน่วยในระบบที่ใช้กันอย่างแพร่หลาย รวมทั้งสูตรต่างๆที่ใช้ในการหาพื้นที่ เพื่อให้เราได้นำไปใช้ได้อย่างถูกต้อง

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ พูดอย่างไรให้ถูกต้อง

  คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ถือเป็นเรื่องสำคัญ ที่น้อง ๆ หลายคนอาจจะต้องพบเจอถ้าหากว่านับถือศาสนาพุทธ เพราะว่าเราอาจมีโอกาสได้สนทนากับพระระหว่างทำบุญก็ได้ วันนี้เราจะมาเรียนรู้คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์กันนะคะว่าแตกต่างจากคำราชาศัพท์สำหรับราชวงศ์และสุภาพชนทั่วไปอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ใช้อย่างไร     แม้คำว่าราชาศัพท์ จะสามารถแปลตรงตัวได้ว่าเป็นถ้อยคำที่ใช้กับพระมหากษัตริย์ แต่ในปัจจุบันนี้คำราชาศัพท์ยังครอบคลุมไปถึงพระบรมวงศานุวงศ์ พระภิกษุสงฆ์ และสุภาพชน หรือเรียกอีกนัยว่าคำสุภาพ สำหรับคำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์จะต่างกับราชวงศ์และสุภาพชน และยังขึ้นอยู่กับสมณศักดิ์ของพระสงฆ์อีกด้วย โดยสามารถเรียงลำดับได้ดังนี้

ความรู้เกี่ยวกับ การสื่อสาร มีอะไรบ้างที่เราควรรู้?

ความรู้เกี่ยวกับการสื่อสาร เป็นเรื่องที่สำคัญอย่างมากในปัจจุบัน แม้ว่าเราจะสื่อสารกับผู้คนอยู่แล้วทุกวัน แต่จะทำอย่างไรให้ตนเองสามารถสื่อสารได้อย่างถูกต้อง มีเรื่องไหนที่ควรรู้และควรระวัง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการสื่อสารให้ดียิ่งขึ้นไปอีก ถ้าอยากรู้แล้วว่าจะเป็นอย่างไรก็ไปดูกันเลยค่ะ   การสื่อสาร คืออะไร?   เป็นกระบวนการถ่ายทอดหรือแลกเปลี่ยนความคิด ข้อมูล ข้อเท็จจริง ความรู้ ความรู้สึก จากบุคคลหนึ่งไปยังอีกบุคคลหนึ่ง ให้มีความเข้าใจตรงกัน     การสื่อสารสำคัญอย่างมากตั้งแต่ในชีวิตประจำวันไปจนถึงอุตสาหกรรม การปกครอง การเมืองและเศรษฐกิจ

การอ้างเหตุผล

บทความนี้จะทำให้น้องๆเข้าใจหลักการอ้างเหตุผลมากขึ้นและสามารถตรวจสอบได้ว่า การอ้างเหตุผล สมเหตุสมผลหรือไม่

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1