สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ

สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใด ๆ                                        อาศัยสมบัติสมมาตรในการเขียนสมการแสดงความเท่ากันของจำนวนได้ 2 แบบ ดังตัวอย่างต่อไปนี้                        1.   a = 2 หรือ 2 = a
2.   a + b = c หรือ c = a + b
3.  -8x =-2 หรือ -2 = -8x
4.  4x + 1 = x – 2 หรือ x – 2 = 4x + 1
5.  x = y หรือ y = x                                                                                      

สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ
อาศัยสมบัติการถ่ายทอดในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.   ถ้า m = n และ n = 8 แล้วจะสรุปได้ว่า m = 8
2.   ถ้า x = 9 + 5 และ 9 + 5 = 14 แล้วจะสรุปได้ว่า x = 14
3.   ถ้า x = -7y และ -7y = 1.5 แล้วจะสรุปได้ว่า x = 1.5
4.   ถ้า y = 3x + 2 และ 3x + 2 = 5 แล้วจะสรุปได้ว่า y = 5
5.   ถ้า Z = p x N และ p x N = k แล้วจะสรุปได้ว่า Z = k

สมบัติการบวก

ถ้ามีจำนวนสองจำนวนที่เท่ากันอยู่แล้วเมื่อบวกจำนวนทั้งสองด้วยจำนวนที่เท่ากันแล้วผลลัพธ์จะเท่ากัน 

ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                      

อาศัยสมบัติการบวกในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า 5 x 2 = 10 แล้ว (5×2) + (-3) = 10 + (-3)
2.  ถ้า a = 8 แล้ว a + 2 = 8 + 2
3.  ถ้า x + 3 = 12 แล้ว (x + 3) + (-3) = 12 + (-3)
4.  ถ้า m = n แล้ว m + p = n + p เมื่อ p แทนจำนวนจริงใด ๆ
5.  ถ้า x + 0.5 = 9 แล้ว (x + 0.5) + (-1) = 9 + (-1)

จำนวนที่นำมาบวกกับแต่ละจำนวนที่เท่ากันนั้น  อาจจะเป็นจำนวนบวกหรือจำนวนลบก็ได้ ในกรณีที่บวกด้วยจำนวนลบมีความหมายเหมือนกับนำจำนวนลบออกจากจำนวนทั้งสองข้างของสมการ คือ   

ถ้า a = b แล้ว a +(- c) = b +(- c) หรือ a – c = b – c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

นั่นคือ ถ้า a = b แล้ว a – c = b – c  เมื่อ a, b และ c แทนจำนวนจริงใดๆ

สมบัติการคูณ

ถ้ามีจำนวนสองจำนวนที่เท่ากัน เมื่อนำจำนวนอีกจำนวนหนึ่งมาคูณจำนวนทั้งสองนั้นแล้วผลลัพธ์จะเท่ากัน       

ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                                 

อาศัยสมบัติการคูณในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า x = y แล้ว 5x = 5y
2.  ถ้า m + 2 = 3n แล้ว 4(m + 2) = 4(3n)
3.  ถ้า -8x = 16 แล้ว (-8x)(5) = 16(5)
4.  ถ้า z = t แล้ว -3z = -3t
5.  ถ้า a = 2c แล้ว a(-4) = 2c(-4)
จำนวนที่นำมาคูณกับจำนวนสองจำนวนที่เท่ากันนั้น อาจจะเป็นจำนวนเต็มหรือเป็นเศษส่วนก็ได้ เช่น

ถ้า x = y  แล้ว  \frac{1}{4}x=\frac{1}{4}y  หรือ  \frac{x}{4}=\frac{y}{4}

และถ้า a = b, c ≠ 0  แล้ว \frac{1}{c}\times a=\frac{1}{c}\times b   หรือ \frac{a}{c}\times \frac{b}{c}

นั่นคือ ถ้า a = b แล้ว \frac{a}{c}=\frac{b}{c}  เมื่อ a,b และ c แทนจำนวนจริงใด ๆ ที่ c ≠ 0

ฝึกทำโจทย์

ให้บอกสมบัติของการเท่ากันในการแก้สมการต่อไปนี้

         1)  ถ้า x = 5  แล้ว  5  = x

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         2)  ถ้า 4x = 12 แล้ว 12 = 4x

      สมบัติของการเท่ากันที่ใช้  คือ สมบัติสมมาตร

         3)  ถ้า  x = 4a และ 4a  = 8  แล้ว x = 8     

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         4)  ถ้า x – 9 = 13 แล้ว  x – 9 + 8  = 13 + 8

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         5)  ถ้า 3x + 5  = b และ  b  = 20  แล้ว 3x + 5  = 20        

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         6)  ถ้า  x + 1  = 6  แล้ว 2(x + 1)  = 2(6)

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

         7)  ถ้า  6x – 2  = 8  แล้ว  6x – 2 + 2  = 8 + 2

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         8)  ถ้า  5 (x – 6)  = y + 2 และ y + 2  = 25  แล้ว  5 (x – 6)  = 25

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         9)  ถ้า  \frac{4x+10}{5}=\frac{x-6}{3}   แล้ว  \frac{x-6}{3}=\frac{4x+10}{5}          

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         10)  ถ้า  7x = 49  แล้ว 7x \times \frac{1}{7}  = 49 \times \frac{1}{7}

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

สรุป สมบัติของการเท่ากัน

สมบัติสมมาตร : ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำานวุ่นจริงใด ๆ

สมบัติถ่ายทอด : ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการบวก : ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการคูณ : ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

เมื่อน้องๆเรียนรู้เรื่อง สมบัติของการเท่ากัน ทำให้สามารถนำความรู้ที่ได้ไปใช้ในการหาคำตอบของสมการ ซึ่งสามารถนำ สมบัติการเท่ากันมาใช้ในการแก้สมการ ได้รวดเร็วยิ่งขึ้น  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแก้สมการเชิงเส้นตัวแปรเดียว ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแก้สมการได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ สมบัติของการเท่ากัน

        คลิปวิดีโอนี้ได้รวบรวม สมบัติของการเท่ากัน ซึ่งประกอบด้วย สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

การตรวจสอบความสมเหตุสมผล

การตรวจสอบความสมเหตุสมผล

จากบทความที่ผ่านมาเราเรียนเรื่องการให้เหตุผลแบบนิรนัย บทความนี้เป็นเนื้อหาเรื่องการตรวจสอบความสมเหตุสมผลซึ่งมักจะออกสอบทั้งในโรงเรียนและ O-Net หลังจากน้องๆได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบได้แน่นอนค่ะ

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว ระบบสมการเชิงเส้นสองตัวแปร เช่น แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้) แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

แพทยศาสตร์สงเคราะห์ ศึกษาที่มาของมรดกทางวรรณคดีของชาติ

ในยุคสมัยที่การแพทย์ยังไม่เจริญก้าวหน้า ภาวะการเจ็บป่วยของประชาชนมีมากขึ้น แพทยศาสตร์สงเคราะห์ ถูกจัดทำขึ้นเพื่อให้แพทย์และประชาชนสามารถศึกษาเรื่องของโรคภัยได้ด้วยตนเอง เป็นภูมิปัญญาทางการแพทย์และมรดกทางวรรณคดีของชาติที่สำคัญมาก ๆ อีกเรื่องหนึ่ง บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคีเรื่องสำคัญที่ควรค่าแก่การอนุรักษ์ สืบทอดว่ามีที่มาและเนื้อหาอย่างใน คัมภีร์ฉันทศาสตร์ แพทยศาสตร์สงเคราะห์   ความเป็นมา แพทยศาสตร์สงเคราะห์   ตำราแพทยศาสตร์สงเคราะห์ เป็นตำราแพทย์แผนโบราณฉบับหลวง มีที่มาจากพระราชดำริของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 ที่ทรงเห็นว่า บรรดาคัมภีร์แพทย์แผนโบราณและตำรายาพื้นบ้านของไทยนั้นมีความสำคัญ เป็นสมบัติทางวัฒนธรรมที่ควรค่าแก่การรักษาไว้

สามัคคีเภทคำฉันท์

สามัคคีเภทคำฉันท์ วรรณคดีขนาดสั้นที่ว่าด้วยความสามัคคี

สามัคคีเภทคำฉันท์ เป็นนิทานสุภาษิตขนาดสั้นว่าด้วยเรื่องความสามัคคี เป็นอีกหนึ่งวรรณคดีที่ได้รับการยกย่องว่าแต่งดี ทั้งด้านการประพันธ์และเนื้อหา เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปทำความรู้จักกับวรรณคดีเรื่องดังกล่าวเพื่อศึกษาที่มา จุดประสงค์ รวมไปถึงเรื่องย่อ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ที่มาของเรื่องและจุดประสงค์ในการแต่ง   สามัคคีเภทคำฉันท์ ดำเนินเรื่องโดยอิงประวัติศาสตร์ครั้งพุทธกาล เป็นนิทานสุภาษิตในมหาปรินิพพานสูตรและอรรถกถาสุมังคลวิลาสินี     ในสมัยรัชกาลที่ 6 เกิดวิกฤตการณ์ทั้งภายในและภายนอกประเทศ เช่น เกิดสงครามโลกครั้งที่ 1

มารยาทในการพูด

มารยาทในการพูดที่ดีมีอะไรบ้างที่เราควรรู้

บทนำ   สวัสดีน้อง ๆ ทุกคน กลับเข้ามาสู่เนื้อหาสาระดี ๆ อีกครั้ง โดยวันนี้จะเป็นเนื้อหาที่เกี่ยวกับมารยาทในการพูด และจะต่อจากเนื้อหาเมื่อครั้งที่แล้วอย่างเรื่องมารยาทในการฟัง ซึ่งถือเป็นบทเรียนที่มีประโยชน์มาก ๆ เมื่อเราต้องไปพูดต่อหน้าที่สาธารณะ หรือพูดคุยสนทนากับเพื่อน ๆ คุณครู พ่อแม่ของเรา เพื่อให้การสื่อสารมีประสิทธิภาพ เราก็ควรเรียนรู้มารยาทที่ดีในการพูดไปด้วย ถ้าน้อง ๆ ทุกคนพร้อมแล้วมาดูกันว่าวันนี้จะมีเนื้อหาอะไรมาฝากกันบ้าง     การพูด

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1