ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

             ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้

  1. การหา ห.ร.ม. โดยการหาผลคูณร่วม
  2. การหา ห.ร.ม. โดยการแยกตัวประกอบ
  3. การหา ห.ร.ม. โดยการหาร (หารสั้น)

ก่อนที่น้องจะไปศึกษาวิธีการหา ห.ร.ม. นั้น น้องๆ มาดูบทนิยามของ ตัวหารร่วมหรือตัวประกอบร่วม กันก่อนนะคะ

      ตัวหารร่วม หรือ ตัวประกอบร่วม  ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง จำนวนนับใด ๆ ที่หารจำนวนนับเหล่านั้นได้ลงตัวทุกจำนวน

น้องๆ ทราบหรือไม่ว่า ตัวประกอบของทั้งหมดของ  45  และ  90 มีจำนวนใดบ้าง

ตัวประกอบทั้งหมดของ  45  คือ  1, 3, 5, 9, 15, 45

ตัวประกอบทั้งหมดของ  90  คือ  1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90

พิจารณาตัวประกอบของ  45  และ  90 ว่าจำนวนใดบ้างที่สามารถหารทั้ง  45  และ  90  ได้ลงตัว  จะได้ว่า จำนวนนั้นคือ  1, 3, 5, 9, 15, 45

ต่อไปมาศึกษาวิธีการหารร่วมหรือตัวประกอบร่วม กันนะคะ  

ตัวอย่างที่ 1 จงหาตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12

วิธีทำ  ตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12 สามารถหาได้ ดังนี้

   ตัวประกอบทั้งหมดของ 10 คือ  1, 2, 5, 10

   ตัวประกอบทั้งหมดของ 12 คือ  1, 2, 3, 4, 6, 12

ดังนั้น   ตัวหารร่วมหรือตัวประกอบร่วมของ 10 และ 12 คือ 1 และ 2

ตัวอย่างที่ 2 จงหาตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18

วิธีทำ   ตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18 สามารถหาได้ ดังนี้

  ตัวประกอบทั้งหมดของ 12 คือ  1, 2, 3, 4, 6, 12

  ตัวประกอบทั้งหมดของ 15 คือ  1, 3, 5, 15

  ตัวประกอบทั้งหมดของ 18 คือ  1, 2,3, 6, 9, 18

ดังนั้น  ตัวหารร่วมหรือตัวประกอบร่วมของ 12, 15 และ 18 คือ 1 และ 3

ข้อสังเกต เนื่องจาก 1 หารจำนวนนับทุกจำนวนลงตัว ดังนั้น 1 เป็นตัวหารร่วมหรือตัวประกอบร่วมของจำนวนนับทุกจำนวน

เมื่อน้องๆเข้าใจ ตัวหารร่วม หรือ ตัวประกอบร่วม กันดีแล้ว ลำดับต่อไปขอนำเสนอ บทนิยาม ตัวหารร่วมมาก (ห.ร.ม.) ดังนี้

ตัวหารร่วมมาก (ห.ร.ม.)   ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น

เมื่อน้องๆ เข้าใจบทนิยามของ ตัวหารร่วมมาก (ห.ร.ม.) ลำดับต่อไป จะนำเสนอวิธีการหา ห.ร.ม. ทั้ง 3 วิธีกันคะ มาเริ่มทีวิธีแรกกันเลยนะคะ

วิธีที่ 1 การหา ห.ร.ม. โดยการหาผลคูณร่วม

หลักการ

  1. หาตัวหารหรือตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ห.ร.ม. แต่ละจำนวน
  2. พิจารณาตัวหารร่วม หรือตัวประกอบร่วมที่มีค่ามากที่สุด
  3. ห.ร.ม. คือ ตัวหารร่วม หรือตัวประกอบร่วมที่มีค่ามากที่สุด

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการหาผลคูณร่วม เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 3  จงหา  ห.ร.ม.  ของ  12, 18, และ 24  โดยการพิจารณาตัวประกอบ

วิธีทำ  ตัวประกอบทั้งหมดของ  12  คือ  123,  4,  6  และ  12

  ตัวประกอบทั้งหมดของ  18  คือ  1236,  9  และ  18

  ตัวประกอบทั้งหมดของ  24  คือ  123,  4,  6,  8,  12  และ  24

  จะได้ว่า  ตัวประกอบร่วมของ  12,  18,  และ  24  คือ  123 และ  6

  ตัวประกอบร่วมที่มากที่สุดของ  12,  18  และ  24  คือ  6

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.)  ของ  12,  18  และ  24  คือ  6 

ตัวอย่างที่ 4  จงหา   ห.ร.ม.  ของ  18, 27 และ 36 โดยการพิจารณาตัวประกอบ

วิธีทำ  ตัวประกอบทั้งหมดของ  18  คือ  1, 2, 3, 6, 9  และ  18

  ตัวประกอบทั้งหมดของ  27  คือ  1, 3, 9  และ  27

  ตัวประกอบทั้งหมดของ  36  คือ  1, 2, 3, 4, 6, 9, 12, 18  และ  36

  จะได้ว่า  ตัวประกอบร่วมของ  18, 27  และ  36  คือ  1, 3  และ 9

  ตัวประกอบร่วมที่มากที่สุดของ  18, 27  และ  36  คือ   9

ดังนั้น   ตัวหารร่วมมาก (ห.ร.ม.)  ของ  18, 27  และ  36   คือ  9 

การหา ห.ร.ม. โดยใช้วิธีที่ 1 จะเป็นการหาตัวประกอบร่วมที่มีค่ามากที่สุด ต่อไปน้องๆมาศึกษาวิธี การหา ห.ร.ม. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 2 การหา ห.ร.ม. โดยการแยกตัวประกอบ

  1. แยกตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ห.ร.ม. แต่ละจำนวน
  2. พิจารณาตัวประกอบเฉพาะที่ซ้ำกันทุกจำนวน
  3. ห.ร.ม. คือผลคูณของตัวประกอบเฉพาะดังกล่าว

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการแยกตัวประกอบ เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 5  จงหา ห.ร.ม. ของ 40, 72 และ 104  โดยการแยกตัวประกอบ 

วิธีทำ  การแยกตัวประกอบของ  40, 72 และ 104  ทำได้ดังนี้

ห.ร.ม.

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  40, 72 และ 104  คือ  8

ตัวอย่างที่ 6  จงหา  ห.ร.ม.  ของ  108,  180  และ  228  โดยการแยกตัวประกอบ 

วิธีทำ    การแยกตัวประกอบของ  108,  180  และ  228  ทำได้ดังนี้

ห.ร.ม.

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  108,  180  และ  228  คือ  12

หมายเหตุ : การหา ห.ร.ม. ของจำนวนนับ 3 จำนวนใดๆ จะต้องมี 3 จำนวนซ้ำกัน ซึ่งจะต้องเอาจำนวนที่ซ้ำกันมา 1 ตัว มาคูณกัน ดังตัวอย่างข้างต้น  

จะดีกว่ามั้ยคะ ถ้ามีวิธีการที่จะสามารถหา ห.ร.ม. ได้รวดเร็วยิ่งขึ้น แต่ทั้งนี้ทั้งนั้นขึ้นอยู่กับความถนัดของแต่ละบุคคลนะคะ น้องๆ ลองศึกษาวิธีสุดท้ายได้โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ห.ร.ม. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 3 การหา ค.ร.น. โดยการหาร (หารสั้น) 

หลักการ

  1. หาจำนวนเฉพาะที่หารทุกจำนวนได้ลงตัว
  2. หาจำนวนเฉพาะที่หารผลลัพธ์ทุกตัวได้ลงตัว ดำเนินการเช่นนี้ไปเรื่อย ๆ จนไม่มีจำนวนเฉพาะใดหารผลลัพธ์ทุกตัวได้ลงตัว
  3. ห.ร.ม. คือ ผลคูณของจำนวนเฉพาะที่นำไปหารในแต่ละขั้นตอน

เมื่อศึกษาหลักการหา ห.ร.ม. โดยการหาร (หารสั้น) เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 7   จงหา  ห.ร.ม.  ของ 168  และ  264 โดยวิธีตั้งหารสั้น

วิธีทำ         

                               2 )168    264

                               2 )  84    132

                               2 )  42     66

                               3 )  21     33

                                     7     11

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  168  และ  264   คือ  2 x 2 x 2 x 3  =  24

ตัวอย่างที่ 8  จงหา ห.ร.ม. ของ 24 , 60 และ 84  โดยการตั้งหาร

วิธีทำ                                         

                                           2  )  24      60       84

                                           2  )  12      30      42

                                           3  )    6       15      21

                                                     2       5        7

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.)  ของ  24,  60  และ  84  คือ 2 x 2 x 3 = 12

ตัวอย่างที่ 9  จงหา  ห.ร.ม.  ของ  18,  27  และ  36

วิธีทำ              

3 )18     27      36

3 ) 6      9      12

     2      3        4

ดังนั้น ตัวหารร่วมมาก (ห.ร.ม.) ของ 18,  27  และ  36  คือ  3 x 3  =   9

ตัวอย่างที่ 10   จงหา ห.ร.ม.  ของ  40,  72  และ  104  โดยการตั้งหาร

วิธีทำ                                         

2  )    40     72      104

2  )    20     36       52

2  )    10     18       26

          5       9        13

ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  40,  72  และ  104  คือ 2 x 2 x 2 = 8

ตัวอย่างที่ 11  จงหา  ห.ร.ม.  ของ  72,  144  และ  216  โดยการตั้งหาร

วิธีทำ                     

2  )   72     144     216    

2  )   36       72     108

2  )   18       36      54 

3  )     9       18      27 

3  )     3        6        9 

           1        2        3 

   ดังนั้น  ตัวหารร่วมมาก (ห.ร.ม.) ของ  72,  144  และ  216  คือ 2 x 2 x 2 x 3 x 3 = 72 

เมื่อน้องๆเรียนรู้เรื่อง ตัวหารร่วมมาก (ห.ร.ม.)  จาก ตัวอย่าง ห.ร.ม. หลายๆตัวอย่าง จะเห็นได้ชัดว่า การหา ห.ร.ม. ไม่ได้เป็นเรื่องยากอย่างที่คิด ลำดับต่อไปที่น้องๆต้องเรียนรู้คือการหา  ตัวคูณร่วมน้อย (ค.ร.น.) ซึ่งจะเป็นการฝึกน้องๆได้มีวิธีการหา ค.ร.น. แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การหา ห.ร.ม.

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา ตัวหารร่วมมาก (ห.ร.ม.) ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค การหา ห.ร.ม. รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กลอนดอกสร้อยรำพึงในป่าช้า

กลอนดอกสร้อยรำพึงในป่าช้า ความเป็นมาของวรรณคดีที่แปลจากภาษาอังกฤษ

กลอนดอกสร้อยรำพึงในป่าช้า เป็นวรรณคดีที่ไทยที่ถูกแปลมาจากภาษาอังกฤษ น้อง ๆ คงจะสงสัยกันใช่ไหมคะว่าทำไมเราถึงได้เรียนวรรณคดีที่ถูกแปลจากภาษาอื่นด้วย บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักวรรณคดีที่ทรงคุณค่าอีกเรื่องหนึ่งว่ามีที่มาและเรื่องย่ออย่างไร ใครเป็นผู้แต่งในฉบับภาษาไทย ถ้าพร้อมที่จะเรียนรู้แล้วก็ไปดูกันเลยค่ะ   ความเป็นมา กลอนดอกสร้อยรำพึงในป่าช้า     วรรณคดีเรื่องกลอนดอกสร้อยรำพึงในป่าช้า วรรณคดีเรื่องนี้มีที่มาจากกวีนิพนธ์อังกฤษชื่อ Elegy Written in a country churchyard ของ ธอร์มัส

NokAcademy_ProfilePastTense

มารู้จักกับ Past Tenses กันเถอะ

สวัสดีค่ะนักเรียนที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Past Tenses ที่ไม่ได้มีแค่ Past Simple Tenses นะคะ   มาทบทวนเรื่อง Past Tenses กันเถอะ     การพูดถึงเหตุการณ์ที่เกิดในอดีตนั้นสามารถพูดได้หลายรูปแบบ แต่จะพูดอย่างไรให้สอดคล้องกับบริบทนั้นย่อมสำคัญเช่นกัน และก่อนอื่นเราจะต้องรู้จักก่อนว่า การเล่าถึงงเหตุการณ์ในอดีตนั้นเราสามารถเล่าได้หลายแบบ ครูจะขอยกตัวอย่างจากสถาณการณ์การใช้ไปหาโครงสร้างและคำศัพท์ที่จำเป็นเพื่อให้เราเข้าใจความสำคัของ Tense นั้นๆ ร่วมกับเทคนิค “Situational

ม3 เน้นรูปอดีตโดยใช้ Did_ Was_Were_

Short question เน้นรูปอดีตโดยใช้ Did, Was, Were

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “Short question เน้นรูปอดีตโดยใช้ Did, Was, Were” ไปลุยกันโลดเด้อ   ทำไมต้องเรียนเรื่อง Did, Was, Were Did, Was, Were ใช้ถามคำถามใน Past Simple Tense กับเหตุการณ์ที่เกิดขึ้นและจบลงไปแล้วในอดีต หรือ ถามเพื่อให้แน่ใจว่าได้ทำสิ่งนั้นๆไปแล้ว

โคลงนฤทุมนาการ โคลงสุภาษิตสอนใจรู้ไว้ไม่เป็นทุกข์

หลังจากได้ศึกษาเรื่องโคลงโสฬสไตรยางค์ไปแล้ว น้อง ๆ ทราบไหมคะว่าในโครงสุภาษิตยังมีเรื่องอื่นอีกด้วย และในบทเรียนที่น้อง ๆ จะได้เรียนต่อไปนี้ก็คือเรื่อง โคลงนฤทุมนาการ เป็นโคลงสุภาษิต ที่ใช้โคลงสี่สุภาพในการประพันธ์เหมือนโคลงโสฬสไตรยางค์ แต่จะมีความหมาย และเนื้อหาอย่างไรบ้าง ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงนฤทุมนาการ คืออะไร     ก่อนที่จะไปเรียนรู้ว่าในโคลงนฤทุมนาการมีอะไรบ้างนั้น เรามาดูกันที่ความหมายก่อนเลยค่ะ คำว่า นฤทุมนาการ มาจากคำศัพท์ต่าง

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

การเขียนเรียงความ

เทคนิคการเขียนเรียงความง่าย ๆ ที่จะช่วยถ่ายทอดความคิดให้เป็นขั้นตอน

การเขียนเรียงความ เป็นทักษะการเขียนที่มีสำคัญมาก เพราะเป็นการถ่ายทอดความคิดให้ออกมาอยู่ในรูปของตัวอักษร จะมีวิธีเขียนอย่างไรบ้างนั้น บทเรียนในวันนี้จะทำให้น้อง ๆ มีความรู้ความเข้าใจถึงวิธีการเขียนเรียงมากขึ้น จะเป็นอย่างไรนั้น ไปเรียนรู้พร้อมกันเลยค่ะ     เรียงความ เป็นทักษะการเขียนที่แสดงออกถึงความรู้สึกนึกคิด ความเห็น ความเข้าใจของผู้เขียน มีรูปแบบและวิธีการเขียนที่มีแบบแผน เพื่อถ่ายทอดความคิดออกมาเป็นตัวอักษรให้น่าอ่าน และยังเป็นพื้นฐานของการเขียนต่าง ๆ ไม่ว่าจะเป็นบทความหรือนวนิยายอีกด้วย โดยประเภทของการเขียนเรียงความมีดังนี้ 1. เรื่องที่เขียนเพื่อความรู้ 2. เรื่องที่เขียนเพื่อความเข้าใจ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1