จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนเฉพาะและตัวประกอบเฉพาะ

บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ 

ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่ 2 หารไม่ลงตัว เรียกว่า จำนวนคี่

จากที่น้องๆ ได้ศึกษาความหมายของตัวประกอบเมื่อเข้าใจความหมายแล้ว ลำดับต่อไปให้หาจำนวนนับที่หาร 8, 12 และ 20 ลงตัว

จำนวนที่หาร  8     ได้ลงตัว   ได้แก่   1, 2, 4   และ 8

จำนวนที่หาร  12   ได้ลงตัว   ได้แก่   1, 2, 3, 4, 6 และ 12

จำนวนที่หาร  20   ได้ลงตัว   ได้แก่   1, 2, 4, 5, 10   และ 20

เราเรียก  1, 2, 4  และ 8 ว่า เป็นตัวประกอบของ 8

             1, 2, 3, 4, 6   และ 12  ว่า เป็นตัวประกอบของ 12

             1, 2, 4, 5, 10  และ 20  ว่า เป็นตัวประกอบของ 20

เมื่อรู้จักตัวประกอบแล้ว เราจะมาทำความรู้จักกับ จำนวนเฉพาะกันค่ะ 

จำนวนเฉพาะ

ตัวอย่างที่ 1  จงหาตัวประกอบทั้งหมดของจำนวนนับ 1 – 10

ตัวประกอบทั้งหมดของ  1   คือ   1

ตัวประกอบทั้งหมดของ  2   คือ   1, 2

ตัวประกอบทั้งหมดของ  3   คือ   1, 3

ตัวประกอบทั้งหมดของ  4   คือ   1, 2, 4

ตัวประกอบทั้งหมดของ  5   คือ   1, 5

ตัวประกอบทั้งหมดของ  6   คือ   1, 2, 3, 6

ตัวประกอบทั้งหมดของ  7   คือ   1, 7

ตัวประกอบทั้งหมดของ  8   คือ   1, 2, 4, 8

ตัวประกอบทั้งหมดของ  9   คือ   1, 3, 9

ตัวประกอบทั้งหมดของ  10 คือ   1, 2, 5, 10       

ดังนั้นจำนวนนับที่มีค่าอยู่ระหว่าง  1 – 10  ที่เป็นจำนวนเฉพาะได้แก่  2, 3, 5 และ   7

สรุปได้ว่า จำนวนเฉพาะ คือ จำนวนที่มากกว่า 1 ที่มีตัวประกอบสองตัว คือ 1 และตัวมันเอง 

ตัวอย่างที่ 2 จงพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่ เพราะเหตุใด

       1)  2      2) 6      3) 11      4) 15      5)  19      6) 21      7) 31      8) 47      9) 87      10) 97

1)  2     เป็นจำนวนเฉพาะ        เพราะ  2      มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 2

2)  6     ไม่เป็นจำนวนเฉพาะ    เพราะ  6    มีตัวประกอบ   4 ตัว  ได้แก่   1 , 2, 3 และ 6

3)  11    เป็นจำนวนเฉพาะ       เพราะ  11    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 11

4)  15    ไม่เป็นจำนวนเฉพาะ  เพราะ  15    มีตัวประกอบ   4 ตัว  ได้แก่   1, 3, 5 และ 15

5)  19    เป็นจำนวนเฉพาะ       เพราะ  19    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 19

6)  21    ไม่เป็นจำนวนเฉพาะ   เพราะ  21  มีตัวประกอบ  4 ตัว  ได้แก่   1 , 3 ,7 และ 21

7)  31    เป็นจำนวนเฉพาะ        เพราะ  31   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 31

8)  47    เป็นจำนวนเฉพาะ         เพราะ  47   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 47

9)  87    เป็นจำนวนเฉพาะ        เพราะ  87   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 87

10) 97   เป็นจำนวนเฉพาะ        เพราะ  97   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 97

จากตัวอย่างข้างต้น ทำให้น้องๆ รู้จักจำนวนเฉพาะ ต่อไปเราจะมาทำความรู้จักกับ ตัวประกอบเฉพาะ กันค่ะ 

ตัวประกอบเฉพาะ

ตัวอย่างที่ 3  พิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่  เพราะเหตุใด

              1)  12                       2) 23                        3) 28                        4) 41

วิธีทำ         1)  12  ไม่เป็นจำนวนเฉพาะ  เพราะ  12  มีตัวประกอบ  6  ตัว ได้แก่  1, 2, 3, 6 และ 12               

2)  23  เป็นจำนวนเฉพาะ  เพราะ  23  มีตัวประกอบ  2  ตัว ได้แก่  1  และ  23   

3)  28  ไม่เป็นจำนวนเฉพาะ  เพราะ  28  มีตัวประกอบ  6  ตัว  ได้แก่   1, 2, 4, 7, 14 และ 28  

4)  31  เป็นจำนวนเฉพาะ  เพราะ  31  มีตัวประกอบ 2  ตัว ได้แก่  1  และ  31

ตัวอย่างที่ 4  จงหาตัวประกอบเฉพาะของจำนวนต่อไปนี้

              1)  8         2) 25         3) 54            

          1)   8  มีตัวประกอบทั้งหมด  ได้แก่   1, 2, 4, 8

   ตัวประกอบเฉพาะของ  8 คือ   2

          2)   25 มีตัวประกอบทั้งหมด  ได้แก่  1, 5 และ 25

     ตัวประกอบเฉพาะของ  25 คือ  5

          3)  54  มีตัวประกอบทั้งหมด  ได้แก่  1, 2, 3, 6, 9, 18, 27 และ 54       

    ตัวประกอบเฉพาะของ  54  คือ  2  และ  3                                               

สรุปได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ 

ตัวอย่างที่ 5 จงหาตัวประกอบเฉพาะทั้งหมดของจำนวนต่อไปนี้

1)  24         2) 35         3) 40         4) 75         5) 80   

     1) 24       มีตัวประกอบ 8 จำนวน   คือ  1, 2, 3, 4, 6, 8, 12  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  2 และ 3

     2) 35      มีตัวประกอบ 4 จำนวน   คือ  1, 57 และ 35

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  5 และ 7

     3) 40      มีตัวประกอบ 8  จำนวน  คือ  1, 2, 4, 5, 8, 10, 20  และ 40

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

     4) 75      มีตัวประกอบ 6 จำนวน  คือ  1, 3, 5, 15, 25 และ 75

มีตัวประกอบเฉพาะ  2 จำนวน คือ  3 และ 5

     5) 80     มีตัวประกอบ 10 จำนวน  คือ  1, 2, 4, 5, 8, 10, 16, 20, 40  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

สรุป

ตัวประกอบ ของจำนวนนับใด ๆ  หมายถึง  จำนวนนับทุกจำนวนที่นำมาหารจำนวนนับนั้นได้ลงตัว

จำนวนเฉพาะ คือ  จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ

เมื่อน้องๆเรียนรู้เรื่อง จำนวนเฉพาะและตัวประกอบเฉพาะ จาก ตัวอย่าง หลายๆตัวอย่าง ทำให้รู้ความหมายอย่างชัดเจนว่า จำนวนเฉพาะคืออะไร  ตัวประกอบเฉพาะคืออะไร ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแยกตัวประกอบ ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแยกตัวประกอบได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนเฉพาะและตัวประกอบเฉพาะ

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนเฉพาะและตัวประกอบเฉพาะ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.6 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs  Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

ศึกษาตัวบทและคุณค่าที่แฝงอยู่ในสุภาษิตพระร่วง

สุภาษิตพระร่วง   หลังได้เรียนรู้เรื่องประวัติความเป็นมาของสุภาษิตพระร่วงไปแล้ว น้อง ๆ ก็คงอยากรู้ใช่ไหมคะว่าในเรื่องสุภาษิตพระร่วงนั้นสอดแทรกคำสอนเรื่องใดไว้บ้าง รวมถึงคุณค่าที่อยู่ในวรรณคดีอันทรงคุณค่าเรื่องนี้ด้วย บทเรียนวันนี้จะพาน้อง ๆ ทุกคนไปศึกษาตัวบทเด่น ๆ ที่น่าสนใจในสุภาษิตพระร่วงพร้อมเรียนรู้ถึงคุณค่าของเรื่องนี้กันค่ะ   ศึกษาตัวบทที่น่าสนใจในเรื่องสุภาษิตพระร่วง     คำสอนที่ปรากฏในตัวบท ควรเรียนเพื่อนเป็นประโยชน์แก่ตัวเอง เป็นเด็กควรเรียนหนังสือ พอโตขึ้นค่อยหาเงิน ทำอะไรให้เหมาะสมกับวัย อย่าเอาของคนอื่นมาเป็นของตัวเอง อย่ารีบด่วนสรุปเรื่อง่าง ๆ ให้ประพฤติตนตามแบบวัฒนธรรมที่ดีงาม

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของกาพย์พระไชยสุริยา     กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

01NokAcademy_Question Tag Profile

การใช้โครงสร้างประโยค Question Tags (ปัจจุบัน)

สวัสดีค่ะนักเรียนชั้นป. 6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อเรื่อง การใช้โครงสร้างประโยค Question Tags ในรูปแบบปัจจุบัน โดยที่เราจะเจอกลุ่มประโยคในลักษณะนี้ร่วมกับรูปแบบโครงสร้างประโยคและกริยาที่เป็นปัจจุบัน (V. 1 and Present form) พร้อมแล้วก็ไปลุยกันเลยค่า ความหมายของ Question Tags   Question แปลว่า คำถาม ส่วนคำว่า Tag จะแปลว่า วลี

หลักการคูณทศนิยม พร้อมตัวอย่างที่เข้าใจง่าย

บทความนี้จะพาน้อง ๆมาทำความเข้าใจกับหลักการคูณทศนิยมในแต่ละรูปแบบ พร้อมทั้งอธิบายหลักการและยกตัวอย่างวิธีคิดในแต่ละรูปแบบของการคูณทศนิยม ให้น้อง ๆสามารถนำไปปรับใช้กับการหาคำตอบจากแบบฝึกหัดในห้องเรียนได้จริง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1