อนุกรมเลขคณิต

อนุกรมเลขคณิต

สารบัญ

อนุกรมเลขคณิต

อนุกรมเลขคณิต คือการนำลำดับเลขคณิตแต่ละพจน์มาบวกกัน โดย เขียนแทนด้วย S_{n}=a_{1}+a_{2}+a_{3}+\cdots +a_{n} จากบทความ “สัญลักษณ์การบวก” ซึ่งเป็นการลดรูปการเขียนจำนวนหลายจำนวนบวกกัน ในบทความนี้จะพูดถึงการบวกของลำดับเลขคณิต การหาผลบวก สูตรสำหรับการหาผลบวกเลขคณิต

สูตรอนุกรมเลขคณิต

สูตรของอนุกรมเลขคณิตมีอยู่ 2 สูตร ดังนี้

1) S_{n}=\frac{n}{2}(2a_{1}+(n-1)d)  โดยที่ d คือ ผลต่างร่วม

2) S_{n}=\frac{n}{2}(a_{1}+a_{n})  โดยจะใช้สูตรนี้ก็ต่อเมื่อรู้ค่า n

จากสูตรดังกล่างจะเห็นว่า มีความคล้ายกับสูตรลำดับเลขคณิต ดังนั้นอย่าจำสลับกันนะคะ

ตัวอย่าง

ในเรื่องของลำดับและอนุกรมนั้นโจทย์ปัญหามีหลายแบบ ถือได้ว่าเป็นอีกเรื่องหนึ่งที่มีโจทย์หลากหลาย

ก่อนที่น้อง ๆ จะเริ่มทำแบบฝึกหัด พี่อยากให้น้อง ๆ ทบทวน เรื่องลำดับเลขคณิตก่อน โดยสามารถ เข้าไปดูได้ที่ “ลำดับเลขคณิต

หลังจากทบทวนลำดับเลขคณิตแล้ว มาเริ่มทำแบบฝึกหัดไปพร้อม ๆ กันเลย

1) จงหาผลบวก 20 พจน์แรกของอนุกรม 96 + 94 + 92 + 90 + …

จากโจทย์  พจน์ของอนุกรมลดลงคงที่

ดังนั้นเป็นอนุกรมเลขคณิตที่มี d = 2

โจทย์ต้องการผลบวก 20 พจน์แรก นั่นคือ หา S_{20}

จากสูตร \inline S_{n}=\frac{n}{2}(2a_{1}+(n-1)d)

จากโจทย์ \inline a_{1}=96 , d = -2 และ n = 20

\inline S_{20}=\frac{20}{2}(2(96)+(20-1)(-2))

\inline =10(192+(-38))

=10(154)

=1540

ตอบ ผลบวกของ 20 พจน์แรกของอนุกรม 96 + 94 + 92 + 90 + … มีค่าเท่ากับ 1540

ตัวอย่างอนุกรมเลขคณิต

โจทย์ปัญหาเกี่ยวกับอนุกรมนั้นมีเยอะมาก และอนุกรมเลขคณิตยังสามารถนำมาปรับใช้ในชีวิตประจำวันได้อีกด้วย ไปดูตัวอย่างกันเลยค่ะ

1) จงหาผลบวกของอนุกรมเลขคณิต 7 + 10 + 13 + …+ 157

วิธีทำ จากโจทย์จะเห็นว่าสิ่งที่โจทย์ให้มา ได้แก่ d = 3 ,พจน์ที่ 1  a_1=7 และพจน์ที่ n a_n=157  ดังนั้นเราจะใช้สูตรที่ทราบค่าของพจน์สุดท้าย จะได้

S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}(7+157) จะเห็นว่า สิ่งที่เราไม่ทราบค่าก็คือ n นั่นเอง ดังนั้นเราจะต้องหา n มาก่อน

วิธีการหาค่า n คือ ให้ใช้สูตรของลำดับเลขคณิต และหาว่าพจน์สุดท้าย(ข้อนี้คือ 157 ) คือพจน์ที่เท่าไหร่

a_n=157=a_1+(n-1)d=7+(n-1)(3)

n = 51  นั่นคือ 157 ซึ่งเป็นพจน์สุดท้าย คือพจน์ที่ 51 นั่นเอง จึงสรุปได้ว่า อนุกรมนี้มีทั้งหมด 51 พจน์

เมื่อได้ n มาแล้ว ก็สามารถหาผลบวกของอนุกรมได้แล้ว จะได้

S_n=\frac{n}{2}(7+157)=\frac{51}{2}(164)=4,182

ดังนั้น ผลบวกของอนุกรมเลขคณิตนี้คือ 4,182

 

2) จงหาผลบวกจำนวนคู่ตั้งแต่ 18 ถึง 482

วิธีทำ จากโจทย์ให้หาผลบวกของจำนวนคู่ ดังนั้นสามารถเขียนได้เป็น S_n=18 + 20 + 22 + … + 482

จะเห็นว่าสิ่งที่โจทย์ให้มาได้แก่ d = 2 , a_1=18  และ a_n=482 เราจะใช้สูตรที่มีพจน์สุดท้าย จะได้

S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}(18+482)

หา n โดยใช้สูตรลำดับเลขคณิต

a_n=482=18+(n-1)(2)

n = 233

ดังนั้น จะได้ S_n=\frac{n}{2}(18+482)=\frac{233}{2}(500)=58,250

 

3) หอประชุมของโรงเรียนแห่งหนึ่งจัดเก้าอี้ให้มีเก้าอี้แถวแรก 12 ตัว แถวที่สองมี 14 ตัว แถวที่สามมี 16 ตัว เป็นแบบนี้ไปเรื่อยๆ ถ้าหอประชุมจัดกเ้าอี้ไว้ทั้งหมด 15 แถว จงหาว่ามีเก้าอี้ในหอประชุมทั้งหมดกี่ตัว

วิธีทำ จากโจทย์ให้หาว่ามีเก้าอี้ทั้งหมดกี่ตัว ดังนั้นเราจะเอาเก้าอี้แต่ละแถวบวกกันทั้งหมด 15 แถว จะได้ว่า

จำนวนเก้าอี้ทั้งหมด  = 12 + 14 + 16 + … บวกไปเรื่อยๆจนถึงแถวที่ 15 นั่นหมายความว่า n  = 15 นั่นเอง แต่เนื่องจากตอนนี้เราไม่รู้ว่าแถวที่ 15 มีเก้าอี้ทั้งหมดกี่ตัวซึ่งหมายความว่าเรายังไม่ทราบค่าของพจน์สุดท้ายนั่นเอง

และจากอนุกรมจะเห็นว่า d = 2 ,a_1=12

ดังนั้นจะใช้สูตรที่ไม่มีทราบค่าพจน์สุดท้าย จะได้

S_{15}=\frac{15}{2}(2(12)+(15-1)(2))=390

ดังนั้น มีเก้าอี้ทั้งหมด 390 ตัว

 

4) พี่มีนยืมเงินจากน้องมิว 630 บาท และตกลงกันว่าจะจ่ายเงินคืนน้องทุกวันโดยวันแรกจะคืนให้ 10 บาท วันที่สองจะคืนเงินให้ 12 บาท และวันต่อๆไปจะคืนเงินเพิ่มขึ้นจากวันก่อนหน้าวันละ 2 บาททุกวัน จำนวนวันที่พี่มีนจะจ่ายเงินคืนให้น้องมิวได้ครบพอดีเท่ากับเท่าใด

วิธีทำ จากโจทย์จ่ายเงินคืนวันแรก 10 บาท วันถัดไปจ่ายเงินมากกว่าวันก่อนหน้า 2 บาท และจ่ายจนครบ 630 บาท สามารถเขียนเป็นอนุกรมได้ดังนี้

630 = 10 + 12 + 14 + … บวกไปเรื่อยๆจนรวมกันได้ทั้งหมด 630 บาท และโจทย์ถามว่าใช้เวลากี่วันถึงจะจ่ายเงินครบพอดีนั่นคือ ถามหา n ที่ทำให้ผลบวกนี้เท่ากับ 630

สิ่งที่โจทย์ให้มา คือ S_n=630 , a_1=10  และ  d = 2 และเนื่องจากว่าเราไม่ทราบค่าของพจน์สุดท้ายจึงจะใช้สูตรของอนุกรมS_{n}=\frac{n}{2}(2a_{1}+(n-1)d)

จะเห็นว่ามีค่าที่ต้องใช้ในสูตรหมดแล้ว ดังนั้นก็เหลือแค่แทนค่าและหาค่า n เท่านั้น จะได้ว่า

630=\frac{n}{2}(2(10)+(n-1)(2))

n = -30 , 21 แต่เนื่องจาก n ในที่นี้หมายถึงจำนวนวันจึงไม่สามารถติดลบได้ และโดยทั่วไป n หมายถึงจำนวนพจน์ดังนั้น n จะต้องเป็นจำนวนนับ

ดังนั้น ใช้เวลาทั้ง 21 วันจึงจะคืบเงินครบ 630 บาท

 

5) ถ้า S_n = n^2-4n เป็นผลบวก n พจน์แรกของอนุกรมเลขคณิต ที่มี a_n เป็นพจน์ที่ n และ d เป็นผลต่างร่วมแล้ว d+a_1a_2 เท่ากับเท่าใด

วิธีทำ จากโจทย์ ให้รูปแบบของ S_n มา ดังนั้นเราจะมาลองแทนค่า

จาก S_n = n^2-4n จะได้ว่า

S_1=1^2-4(1)=-3

และจาก S_1=a_1 จะได้ว่า a_1=-3

พิจารณา S_2=2^2-4(2)=-4 

และจากที่เรารู้ว่าสูตรการหาอนุกรมเลขคณิตโดยทั่วไปแล้วคือ S_{n}=\frac{n}{2}(2a_{1}+(n-1)d)

ดังนั้นเราจะได้ว่า

S_{2}=\frac{2}{2}(2(-3)+(2-1)d)=-4

พอเราแก้สมการก็จะได่ d = 2 

ดังนั้นตอนนี้เรารู้ค่า  d และ a_1 แล้ว ดังนั้นเราจะมาหาพจน์ที่ 2 ต่อ โดยใช้สูตรลำดับเลขคณิต

a_2=a_1+d=-3+2=-1

ตอนนี้เรามีค่าของพจน์ที่ 1 และ2 และค่าของ d แล้ว ดังนั้นเราสามารถหาค่าที่โจทย์ถามได้แล้ว จะได้เป็น

d+a_1a_2=2+(-3)(-1)=5 

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าอนุกรมเลขคณิตนั้นสามารถนำมาปรับใช้ในชีวิตประจำวันได้และทำให้การคิดเลขนั้นสะดวกสบายขึ้นด้วย แต่ทั้งนี้น้องๆจะต้องไม่ลืมสูตรของลำดับเลขคณิตนะคะ เพราะเราจะเห็นว่าถึงแม้จะเป็นเรื่องอนุกรมเลขคณิตเราก็ยังได้ใช้ความรู้เรื่องลำดับเลขคณิตมาช่วยอยู่ ดังนั้นน้องๆอย่าลืมไปทวบทวนเรื่องลำดับเลขคณิตกันด้วยนะคะ 

 

วิดีโอเกี่ยวกับอนุกรมเลขคณิต

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับอนุกรมเลขคณิตได้ที่คลิปด้านล่างนี้เลยค่ะ

 

0
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
สำนวน สุภาษิต

แยกให้ออก บอกให้ถูกสำนวน สุภาษิต คำพังเพยแตกต่างกันอย่างไร?

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาเข้าสู่เนื้อหาการเรียนภาษาไทยกันอีกเช่นเคย สำหรับวันนี้จะเป็นบทเรียนที่ทั้งสนุก มีสาระ และเป็นเนื้อหาที่เราต้องได้เจอบ่อย ๆ ในการเรียนภาษาไทยอย่างเรื่องสำนวน สุภาษิต และคำพังเพย น้อง ๆ อาจจะเคยได้ผ่านหูผ่านตากันมาบ้างเพราะเป็นบทเรียนที่ได้เริ่มเรียนตั้งแต่ช่วงประถมศึกษาแล้ว แต่วันนี้เราจะมาเรียนรู้ในเชิงลึกขึ้นไปอีกเกี่ยวกับวิธีการสังเกตระหว่างสำนวน สุภาษิต และคำพังเพยนั้นมีความเหมือน หรือแตกต่างกันอย่างไร มีตัวอย่างประกอบให้ทุกคนได้ดูด้วย ถ้าน้อง ๆ คนไหนพร้อมแล้วก็ไปลุยกับเนื้อหาของวันนี้ได้เลย   สำนวน สำนวน

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้