สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก หรือ \Sigma  เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง

เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย สัญลักษณ์แทนการบวก

1 + 1 + 1 + 1 + 1 + 1  สามารถเขียนแทนด้วย \sum_{i=1}^{6}1

 

สูตรผลร่วม

สูตรเหล่านี้จะทำให้น้องๆประหยัดเวลาในการทำโจทย์มากๆ เนื่องจากไม่ต้องมานั่งแทน n ทีละตัว แล้วนำมาบวกกัน แต่สามารถใช้สูตรนี้ในการหาผลรวมได้เลย ดังนั้นจำสูตรเหล่านี้ไว้ดีๆนะคะ

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

\sum_{i=1}^{n}i^{3}=(\frac{n(n+1)}{6})^{2}

***สูตรข้างต้นใช้ได้กับการบวกตั้งแต่ 1 ถึง n เท่านั้น***

สมบัติที่ควรรู้เกี่ยวกับ \Sigma

สมบัติเหล่านี้จะช่วยให้น้องๆคิดเลขได้ง่ายขึ้นและประหยัดเวลาในการทำโจทย์แต่ละข้อได้เยอะมากๆ

ให้ a_n,b_n เป็นลำดับของจำนวนจริงใดๆ

1)\sum_{n=1}^{k}c=kc        โดยที่ c เป็นค่าคงที่ใดๆ

2) สัญลักษณ์แทนการบวก

3)สัญลักษณ์แทนการบวก

4)\sum ca_n=c\sum a_n  โดยที่ c เป็นจำนวนจริงใดๆ

 

ตัวอย่างเกี่ยวกับสัญลักษณ์การบวก

1)จงหาค่าของ \sum_{n=1}^{4}5

วิธีทำ จากโจทย์เราจะใช้สมบัติของซิกมาข้อที่ 1 เนื่องจาก 5 เป็นค่าคงที่ สัญลักษณ์แทนการบวก

ดังนั้นจะได้ว่า \sum_{n=1}^{4}5=4(5)=20

 

2) จงหาค่าของ \sum_{n=1}^{50}(-1)

วิธีทำ ใช้สมบัติข้อที่ 1 เนื่องจาก -1 เป็นค่าคงที่  \sum_{n=1}^{k}c=kc จะได้

สัญลักษณ์แทนการบวก

 

3) ถ้า a_1+a_2+a_3+a_4=35 จงหาค่า \sum_{n=1}^{4}5a_n

วิธีทำ จากโจทย์จะเห็นว่า สัญลักษณ์แทนการบวก 

พิจารณา \sum_{n=1}^{4}5a_n โดยใช้สมบัติข้อที่ 4 \sum ca_n=c\sum a_n

ดังนั้นจะได้ \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n และเนื่องจากเรารู้ว่า a_1+a_2+a_3+a_4=\sum_{n=1}^{4}a_n=35  

ดังนั้น \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n=5(35)=175

 

4)  ให้ \sum_{n=1}^{10}a_n=55, \sum_{n=1}^{10}b_n=27,\sum_{n=1}^{10}c_n=-22 จงหา \sum_{n=1}^{10}[5a_n-2b_n-6c_n]

วิธีทำ  เราจะพิจารณาสิ่งที่โจทย์ถามก่อน นั่นก็คือ \sum_{n=1}^{10}[5a_n-2b_n-6c_n] เราจะเห็นว่าในวงเล็บนั้นเป็นลำดับที่กำลังลบกันอยู่และจากสมบัติของซิกมาเราสามารถกระจายซิกมาเข้าไปได้(สมบัติข้อที่ 3) จะได้ว่า

สัญลักษณ์แทนการบวก

และจากสมบัติข้อที่ 4 เราสามารถดึงข้าคงที่ออกมาไว้ข้างนอกซิกมาได้ จะได้ว่า

\sum_{n=1}^{10}5a_n-\sum_{n=1}^{10}2b_n-\sum_{n=1}^{10}6c_n=5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n 

จะเห็นว่าเราสามารถตอบได้แล้ว เพราะเราสามารถเอาสิ่งที่โจทย์กำหนดให้มาแทนค่าลงไปได้แล้วจะได้เป็น

5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n=5(55)-2(27)-6(-22)=353

ดังนั้น \sum_{n=1}^{10}[5a_n-2b_n-6c_n]=353

 

5) จงหาผลบวกของ 1 + 2 + 3 + 4 +…+ 64

วิธีทำ จากโจทย์เป็นการบวกกันของจำนวนนับตั้งแต่ 1 ถึง 64  และเราสามารถเขียน 1 + 2 + 3 + 4 +…+ 64 ให้อยู่ในรูปของซิกมาได้ จะได้ว่า

1 + 2 + 3 + 4 +…+ 64 = \sum_{i=1}^{64}i 

และจากสูตร สัญลักษณ์แทนการบวก  ในโจทย์ข้อนี้ n = 64   ดังนั้นจะได้ว่า

สัญลักษณ์แทนการบวก

ดังนั้น 1 + 2 + 3 + 4 +…+ 64 = 2,080

 

6) จงหาผลบวกของ 1^2+2^2+3^2+...+10^2

วิธีทำ จากโจทย์เป็นการบวกของกำลังสองของจำนวนนับตั้งแต่ 1 ถึง 10 และเราสามารถเขียน 1^2+2^2+3^2+...+10^2 ให้อยู่ในรูปของซิกมาได้

จะได้เป็น

1^2+2^2+3^2+...+10^2=\sum_{i=1}^{10}i^2

และจากสูตร  สัญลักษณ์แทนการบวก เราจะเห็นว่า n = 10 ดังนั้นจะได้

สัญลักษณ์แทนการบวก

ดังนั้น 1^2+2^2+3^2+...+10^2 = 385

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าสมบัติของซิกมาและสูตรเกี่ยวกับผลบวกนั้นมีประโยชน์ในการแก้โจทย์อย่างมาก ทำให้ประหยัดเวลาในการคำนวณ และทำให้โจทย์ที่เหมือนจะยากนั้นง่ายขึ้นอีกด้วย ดังนั้นน้องๆอย่าลืมจำสูตรและสมบัติเหล่านี้นะคะ

 

วิดีโอเกี่ยวกับ สัญลักษณ์แทนการบวก

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับซิกมาและสมบัติของซิกมาได้จากคลิปด้านล่างนี้เลยค่ะ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มงคลสูตร

รอบรู้เรื่องมงคลสูตรคำฉันท์ วรรณคดีพระพุทธศาสนาที่มาของหลักมงคล 38

บทนำ   สวัสดีน้อง ๆ ทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจอีกเช่นเคย สำหรับเนื้อหาวันนี้เราจะขอหยิบยกวรรณคดีพระพุทธศาสนามาเล่าให้ทุกคนได้ฟังกันบ้าง ซึ่งวรรณคดีที่เราได้เลือกมานั่นก็คือเรื่อง มงคลสูตรคำฉันท์ เชื่อว่าน้อง ๆ มัธยมปลายหลายคนคงจะคุ้นเคยกับเรื่องนี้กันดีอยู่แล้ว เพราะเป็นวรรณคดี ที่สอนบรรทัดฐานของการกระทำความดีตามวิถีของชาวพุทธ และเป็นที่มาของหลักมงคล 38 ประการด้วย ดีงนั้น เดี๋ยววันนี้เราจะพาน้อง ๆ ไปรู้จักกับวรรณคดีเรื่องนี้ให้มากขึ้น ถ้าพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย     ประวัติความเป็นมา เรื่อง

ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

เทคนิคการใช้ Yes, No Questions M.1

เทคนิคการใช้ Yes, No Questions ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.  1 ที่น่ารักทุกคนวันนี้ครูจะพาไปดูเทคนิคและวิธีการอย่างง่ายในการใช้ประโยค Yes/No questions กันค่ะไปลุยกันเลยค่า Yes, No Questions คืออะไร คือ ประโยคคำถามที่ต้องการคำตอบรับ (Yes) หรือปฏิเสธ (No) เป็นการถามที่ผู้ถามอาจจะมีข้อมูลอยู่บ้างว่า ว่าจะเป็นอย่างนั้นอย่างนี้ หรือผู้ถามอาจจะถามเพื่อให้มั่นใจว่าเป็นจริงตามที่เข้าใจหรือเปล่า ในที่นี้ครูจึงแยกออกเป็น 3 ชนิดค่ะ คือ ประโยคคำถามที่ขึ้นต้นด้วย

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

ที่มาและเรื่องย่อของ มหาชาติชาดก กัณฑ์มัทรี

มหาชาติชาดก หรือมหาเวสสันดรชาดก เป็นชาดกที่ได้ชื่อว่าเป็น มหาชาติ เพราะเป็นชาติสุดท้ายก่อนจะมาจุติเป็นพระพุทธเจ้า จากบทเรียนที่เคยเรียนรู้กันตอน ม.4 น้อง ๆ คงจะทราบกันดีอยู่แล้วว่ามหาชาตินี้มีด้วยกันทั้งหมด 13 กัณฑ์ โดยเรื่องที่เราจะได้เรียนกันเจาะลึกกันไปอีกในวันนี้ คือ กัณฑ์มัทรี นั่นเองค่ะ ถ้าน้อง ๆ อยากรู้แล้วว่าเป็นอย่างไร ก็ไปเรียนรู้พร้อมกันเลยค่ะ   ความเป็นมา     มหาชาติชาดกเป็นเรื่องราวในอดีตกาลของพระพุทธเจ้าที่เล่าให้กับเหล่าประยูรญาติฟังเมื่อครั้งเสด็จกลับเมืองและได้แสดงอภินิหาร

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1