เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์

สารบัญ

Add LINE friends for one click to find article.

เมทริกซ์

เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร

ตัวอย่างการเขียนเมทริกซ์

เมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก

ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก

และจากเมทริกซ์ข้างต้นจะได้ว่า

1 2 3 เป็นสมาชิกในแถวที่ 1

4 5 6 เป็นสมาชิกในแถวที่ 2

7 8 9 เป็นสมาชิกในแถวที่ 3

1 4 7 เป็นสมาชิกในหลักที่ 1

2 5 8 เป็นสมาชิกในหลักที่ 2

3 6 9 เป็นสมาชิกในหลักที่ 3

 

ดังนั้น เราจะใช้สัญลักษณ์ เมทริกซ์ แทนเมทริกมิติ m × n โดยที่ m คือแถว n คือหลัก 

ซึ่ง \inline a_{ij} คือสมาชิกที่อยู่ในตำแหน่งแถวที่ i หลักที่ j โดยที่ i = 1, 2, 3, …, m และ j = 1, 2, 3,…, n

เขียน  \inline a_{ij} ในกรอบสี่เหลี่ยมได้ดังนี้

เมทริกซ์

 

ตัวอย่าง เมทริกซ์

 

1.) พิจารณาเมทริกซ์ต่อไปนี้ 

\inline \begin{bmatrix} 1&5 &7 \\ 3&2 &6 \end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 2 แถว 3 หลัก หรือ มีมิติ 2 × 3
  2.  5 เป็นสมาชิกตำแหน่งแถวที่ 1 หลักที่ 2
  3.  3 เป็นสมาชิกตำแหน่งแถวที่ 2 หลักที่ 1

\inline \begin{bmatrix} 3\\ 1\\ 8\end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 3 แถว 1 หลัก หรือมีมิติ 3 × 1
  2. 8 เป็นสมาชิกตำแหน่งแถวที่ 3 หลักที่ 1

 

เมทริกซ์จัตุรัส

เมทริกซ์จัตุรัส คือเมทริกซ์ที่มีจำนวนแถวเท่ากับจำนวนหลัก ซึ่งก็คือเมทริกซ์ n × n เช่น

1.)   เมทริกซ์  เมทริกซ์ 2× 2

2.)  เมทริกซ์   เมทริกซ์ 3 × 3

 

เมทริกซ์เอกลักษณ์

เมทริกซ์เอกลักษณ์ (I_{n}) คือเมทริกซ์ที่มีมิติ n × n ที่มีตัวเลข 1 บนเส้นทแยงมุมเฉียงลงจากซ้ายไปจนสุด นอกนั้นเป็น 0 หรืออธิบายง่ายๆก็คือ สมาชิกของเมทริกซ์ที่อยู่ตำแหน่งที่ 11, 22, … , nn จะเป็นเลข 1 นอกนั้นเป็น 0

เช่น 

เมทริกซ์

เมทริกซ์

การเท่ากันของ เมทริกซ์

เมทริกซ์จะเท่ากันได้ ก็ต่อเมื่อ สมาชิกตำแหน่งเดียวกันเท่ากัน เช่น 

\begin{bmatrix} 1 &2 \\ 4& 3 \end{bmatrix}=\begin{bmatrix} a &b \\ 4&d \end{bmatrix}

จากตัวอย่างจะได้ว่า

1 และ a อยู่ในตำแหน่งเดียวกัน คือ แถว1 หลัก1  ดังนั้น a = 1

2 และ b อยู่ในตำแหน่ง แถว 1 หลัก 2 ดังนั้น b = 2

และ d = 3

 

เมทริกซ์สลับเปลี่ยน

เมทริกซ์สลับเปลี่ยน (transpose of a matrix) คือเมทริกซ์ที่เกิดจากการเปลี่ยนแถวเป็นหลัก เปลี่ยนหลักเป็นแถว เช่น แถวที่ 1 ก็เปลี่ยนเป็นหลักที่ 1

สมมติให้ A เป็นเมทริกซ์ จะได้ว่า \inline A^T คือเมทริกซ์สลับเปลี่ยน

ตัวอย่าง

ให้  \inline A=\begin{bmatrix} 4& 3 &7 \\ 6& 8 & 2\\2 & 5 & 0 \end{bmatrix}  จงหา \inline A^T

จะได้ เมทริกซ์

 

ให้ A=\begin{bmatrix} 1 & 5 & 7\\ 3& 8 &4 \end{bmatrix} จงหา \inline A^T

จะได้  เมทริกซ์

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Question ป5 การใช้ Question Words

การใช้ Question Words

  สวัสดีค่ะนักเรียนชั้น ป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ Question Words ที่รวมทั้งรูปแบบกริยาช่วยนำหน้าประโยค และรูปแบบ Wh-questions กันนะคะ พร้อมกันหรือยังเอ่ย ถ้าพร้อมแล้วก็ ไปลุยกันเลย   Question words ขึ้นต้นด้วยกริยาช่วย   ทบทวนกริยาช่วยสักนิด Helping verb หรือ Auxiliary verb

โคลนติดล้อ บทความปลุกใจในรัชกาลที่ 6

เป็นที่รู้กันดีกว่าพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ของเรานั้น ทรงโปรดงานด้านวรรณกรรมมาตั้งแต่ยังเยาว์ และเริ่มงานวรรณกรรมตั้งแต่ยังทรงศึกษาอยู่ที่ประเทศอังกฤษ ทำให้มีผลงานในพระราชนิพนธ์มากมายหลายเรื่อง และแตกต่างกันออกไป ที่ผ่านมาน้อง ๆ คงจะได้เรียนมาหลายเรื่องแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปรู้จักกับผลงานของพระองค์อีกเรื่องหนึ่ง แตกต่างจากเรื่องก่อน ๆ ที่เคยเรียนมาอย่างแน่นอน เพราะเรากำลังพูดถึงโคลนติดล้อ ผลงานในพระราชนิพนธ์ที่อยู่ในรูปแบบของบทความ จะมีที่มา มีเนื้อหาที่น่าสนใจอย่างไรบ้างนั้น เราไปติดตามกันเลยค่ะ   ที่มาของ โคลนติดล้อ

ข้อสอบO-Net เรื่องจำนวนจริง

ข้อสอบO-Net ข้อสอบO-Net ในบทความนี้จะคัดเฉพาะเรื่องจำนวนจริงมาให้น้องๆทุกคนได้ดูว่าที่ผ่านมาแต่ละปีข้อสอบเรื่องจำนวนจริงออกแนวไหนบ้าง โดยบทความนี้พี่ได้นำข้อสอบย้อนหลังของปี 49 ถึงปี 52 มาให้น้องๆได้ดูพร้อมเฉลยอย่างละเอียด เมื่อน้องๆได้ศึกษาโจทย์ทั้งหมดและลองฝึกทำด้วยตัวเองแล้ว น้องๆจะสามารถทำข้อสอบทั้งของในโรงเรียนและข้อสอบO-Net ได้แน่นอนค่ะ ข้อสอบO-Net เรื่องจำนวนจริง ปี 49   1.   มีค่าเท่ากับข้อในต่อไปนี้     60      

NokAcademy_ ม.5 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs      Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

01NokAcademy_Question Tag Profile

เรื่อง Tag Question (1)

สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อ “เรื่อง Tag Question “ พร้อมแล้วก็ไปลุยกันเลยจร้า รู้จักกับ Question Tag (Tag Question หรือ Tail Question)   Question Tag ในบางครั้งเรียกว่า Tag Question หรือ Tail Question ก็ได้จร้า 

Nockacademy web logo 3

ทดลองฟรี!

และรับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE

Nockacademy web logo 3

ทดลองฟรี!

รับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE​